
Digilent ZYBO Z7 Video Workshop	

[bookmark: _GoBack][image:]
ZYBO Z7 Video Workshop
Tokyo, Japan
27.09.2017

Theoretical background
Software is everywhere. The flexibility it offers to designers allows it to be used in a multitude of applications. Many consumer, industrial or military products are either running software or began as a software model or prototype executing on a generic circuit, or processor. Decades of advances in software engineering resulted in ever higher abstractions, ever smarter tools, ever increasing number of automatic optimizations that improve code re-use, shorten design time and increase performance. Continuous performance increase quantified by the number of instructions executed per second has been driven at first by the increase in processing frequencies, then by parallelization of algorithms and simultaneous execution of tasks by multiple processing cores.
The ubiquitous nature of software lead to most of the engineering problems to be approached with software solutions at first. Depending on the application a software-only approach might not meet the requirements, be those latency, throughput, power or other. An expensive option would be handing the algorithm over to a hardware engineer for a custom circuit implementation. The entry cost of application-specific integrated circuit (ASIC) design is still high despite advancements in fabrication technologies. Depending on the product forecasts, and ASIC design might not be viable economically.
Bridging the gap between generic processor circuits and ASICs are FPGAs, allowing the use of blank reprogrammable hardware logic elements to implements a custom circuit. It offers a lower barrier of entry to power savings and performance benefits of fabrication technologies without the cost of ASIC. Also, an algorithm optimized for FPGA implementation benefits from the inherently parallel nature of custom circuits.
Hardware
The Digilent Zybo Z7-10 development board is well-suited for prototyping an algorithm running in software at first and then off-loading sub-tasks for processing to custom circuits. It is based on a Xilinx Zynq 7010 SoC, a hybrid between a dual-core ARM A9 (processing system, PS) and Artix-7 based FPGA (programmable logic, PL). Low-latency, high-throughput coupling between PS and PL allows for software implementation, where design-time is more important than performance, and hardware, where performance is critical.
The programming model for software usually makes use of programming languages that abstract from hardware particularities. While this offers increased portability and ways to apply automatic compiler optimizations, avoiding knowledge about the underlying hardware is not possible anymore close to the performance limits.
FPGA design can make use of two different programming models. One is RTL description in VHDL/Verilog, the other is high level synthesis in C/C++. High level synthesis represents a somewhat similar programming model to software programming. However, for a worthwhile improvement over software implementation of the same algorithm, one needs to have a good understanding of the underlying hardware architecture. Much more so than for software in general.
FPGA Architecture
Field programmable gate array (FPGA) is a large array of configurable logic blocks (CLB), interconnect wires and input/output (I/O) pads. The CLB is made up of look-up tables (LUT) and flip-flops (FF), in varying numbers depending on the exact FPGA architecture. This structure is generic enough to implement any algorithm. During programming the LUTs are programmed to implement a certain logic function, and FFs to pipeline the data flow synchronous to a clock signal. Interconnect is also programmed to wire LUTs, FFs, input pads and output pads together resulting in a custom hardware circuit implementing a certain algorithm.
Current FPGA architecture also include hard primitive blocks that specialize a certain function that would otherwise be too costly in terms of logic utilization or too slow in terms of throughput to implement in generic logic. For example, digital signal processing (DSP) blocks are available to implement a multiply-accumulate circuit with no generic logic utilization. These blocks are optimized enough to offer superior performance for the specific task. Another example is dual-port static RAM (BRAM), that offers higher capacities than RAM implemented in LUTs.
These primitive blocks are by default automatically inferred for certain HDL constructs like the multiply operator (*) for DSP or array access for BlockRAM.
LUT is a memory element that implements a truth-table. Depending on the exact architecture, each LUT has a number of inputs that address a location in the truth-table. The value stored at that address is the output of the function implemented. During programming the truth-table is populated to implement the desired function. It can also be thought of and used as a 2N-memories, called distributed RAM. It is a fast memory type because it can be instantiated all over the FPGA fabric, local to the circuit that needs data from it.
FF is a storage element that latches new data on its input when clock and clock enable conditions are true and permanently provides the stored data on its output.
BRAM is a dual-port RAM that stores a larger set of data. It holds 18Kb or 36Kb and can be addressed independently over two ports for both read and write. In essence, two memory locations can be accessed simultaneously in the same clock cycle.
Parallelism and program execution
A processor core executes software instructions in a sequence. Higher-level programming languages translate language statements into assembly instructions that perform the function. Under this abstraction, the addition of two variables usually involves more than one instruction. Apart from the actual arithmetic operation that accesses internal registers, memory load and store instructions will be needed. Performance improvements result in optimizing those memory accesses using caches. Each memory level trades access latency for storage capacity, so less and less data is available at memories of lower latencies. The job of the programmer and compiler is to ensure that for critical areas of an algorithm the spatial locality of data is high and can be accessed with the lowest latency possible.
It requires considerable effort and performance analysis tools to optimize code for execution time.
The FPGA is massively parallel by nature. Every LUT can execute a different function at the same time, so it is possible to have multiple arithmetic logic units (ALU) executing addition operations, for example is parallel. On a processor, the ALU is shared and these would have to be executed sequentially. Memories can be instantiated close to where they are needed, resulting in high instantaneous memory bandwidth.
The role of high level synthesis tools is to extract the best possible circuit implementation from a C/C++ code that is functionally correct and meets the requirements. It analyzes data dependencies determining which operations could and should execute in each clock cycle. Depending on the targeted clock frequency and FPGA, some operations might take more cycles to complete. This step is called scheduling. Next, the hardware resources are determined that implement the scheduled operation best. This is called binding. The last step in the synthesis is the control logic extraction which creates a finite state machine that controls when the different operations should execute in the design.
For multi-cycle operations pipelining is performed in the scheduling phase. Imagine the following C statement:
x=a*b+c;
If the clock period is too small for the multiplication and addition to complete in one clock cycle, it will be scheduled for two cycles. For every set of inputs a, b, and c it takes two cycles to obtain the result. It follows that in cycle 2 the multiplier does not perform any operation; it only provides the result calculated in the previous cycle.

This inefficiency becomes more apparent, when this statement is executed in a loop, ie. the circuit processes more than one set of input data.
If there was a storage element between cycles, the result from cycle 1 would be saved, and the multiplier would be free to perform a calculation for the next set of inputs. This concept is called pipelining and it is a major optimization opportunity increasing the throughput tremendously.

Performance metrics
The previous example is a great opportunity to introduce some performance metrics definitions. The latency of the statement above is two, as it takes two cycles to output the result. In the first non-pipelined case the initiation interval (II) is also two, since it takes two cycles for the circuit to accept a new set of inputs. However, in the second pipelined case the II is just one, because the circuit is able to accept a new set of inputs in every cycle, and will output a result in every cycle. The latency is still two, as the result for the first set of inputs will appear after two cycles. If the circuit processes 10 sets of input data, the non-pipelined versions will have a total latency of 20 cycles ((#-1) * II + latency). The pipelined versions will only take 11 cycles ((#-1) * II + latency) to provide all the 10 results.
These performance metrics are calculated by the tools for both loops and functions, and are considered the most important feedback mechanism for the designer to evaluate the synthesized hardware circuit.
Vivado HLS
Xilinx’s offering in high-level synthesis is part of the Vivado suite and is called Vivado HLS. The workflow is an iterative approach with simulations as verification steps inserted along the way to make sure the design meets the requirements and is functionally correct right from the initial stages. Vivado HLS can:
· compile, execute and debug the C/C++ algorithm,
· synthesize into RTL implementation,
· provide analysis features,
· generate and execute RTL simulation testbenches,
· export the RTL implementation as an IP module.

GUISimulation
RTL Co-simulation

[image:]Views
Project sources and build output
Package IP
Synthesis
Report pane/Text editor

The GUI layout is quite similar to other software IDEs. The project explorer lists the source, include and testbench files. Simulation and synthesis outputs are also visible here grouped into solutions. The workflow action buttons are in the toolbar ordered by their sequence in the workflow. In the upper right corner three layout views are available each fitting the current workflow step.
Task One – Getting familiar with the interface
Let us open an example project to get more familiar with the interface.

A Vivado HLS project is much like any other C/C++ software project. There is a source file defining two functions, a header file declaring the functions and some data types. There is also a test bench source file, which is a regular application with a main entry point that runs test on the functions, validating them on functional correctness. Test benches are used for C simulation, which is the first validation step in the design process. The successfulness of C simulation is determined by the return value of the test bench. It is expected to return 0 for a success, and any non-zero value for failure.
Discuss the implementation of the double_mul_pow2 function and the test bench.

Discuss the results of the C simulation and the messages shown in the console.
[image:]

Notice how the Debug view gets activated, the test bench started and stop at the first instruction of the main function. The test bench can be run step-by-step, breakpoints set, variables and expressions evaluated just like any other software project.

Notice how solution1 in the project view has a csim folder now. Synthesis directives and simulation/synthesis results are grouped into solutions. Having multiple solutions allows us to try different settings, devices, clock periods on the same set of source files and analyze the results for each.

Discuss the report. What did HLS synthesize? What are the latency and interval values? What are the interfaces that got generated?
The Analysis view helps in understanding and evaluating the synthesized design. The synthesized modules and loops can be seen on the left, along with timing and logic utilization information. In this case double_mul_pow2 does not have any sub-blocks, it is a flat function. Selecting an item will bring up the Performance view on the right. This shows the control states of the logic (C0, C1) and each operation that is scheduled to execute in that state.

When the synthesized design satisfies all the project requirements, the next step is running an RTL simulation to verify that it is functionally correct. In Vivado HLS terminology this is called C/RTL Cosimulation. Vivado HLS is capable of automatically generating an RTL test bench by running the C test bench and using the inputs from there as stimuli and the outputs as expected values.

The Dump Trace option will export the RTL simulation waveforms that can be opened in Vivado Simulator, for example.

Analyze the simulation waveforms. Look for input values, results. Measure latencies and initiation intervals.
Since the hardware is now validated, all that is left is to package it up into a reusable format.

The exported IP files are generated in the active solution folder under impl. Locate the files and explore the sub-folders.
This concludes our first task – Getting familiar with the interface.

Task Two – Create a pass-through video pipeline
In this step we are going to create an FPGA project that decodes DVI input and forwards it to the VGA output. This pipeline will serve as the base design that will accept the IP exported from HLS. We are going to create it in Vivado block design re-using IP available from Digilent and Xilinx. The Digilent IPs are available online at https://github.com/Digilent/vivado-library/archive/master.zip or among the workshop materials.

If “Zybo Z7 -10” is not showing among the known boards, go back a few steps and make sure init.tcl is installed at the correct location and it has a valid path in it. Restart Vivado and make sure the Tcl Console is showing that init.tcl has been successfully sourced.
In this project we are going to use the block design flow to create the FPGA design. This helps us re-use any available IP so that we can focus on the processing IP created in HLS. The following IPs are going to be used from Digilent: DVI-to-RGB (DVI Sink), RGB-to-DVI (DVI Source).
And from Xilinx: Video In to AXI4-Stream, AXI4-Stream to Video Out.

[image: C:\Users\rogyorge\AppData\Local\Microsoft\Windows\INetCache\Content.Word\arrows.png]

[image:]

All that is left is adding the constraint file which tells the synthesis tool about physical constraints for the design like which FPGA pin to use for each interface and timing constraints like the maximum frequency for the DVI pixel clock.

The board is now ready to forward video input on its DVI port to VGA. Connect the Zybo to an HDMI source like a laptop and to a VGA monitor. The laptop should recognize it as a display and you should be able to extend your desktop to it. The extended desktop should be forwarded by the Zybo to the VGA monitor.

Task Three – Edge detection in HLS
The video pipeline created in Task 2 provides a good basis for image processing functions defined in HLS. The bus between blocks “Video In to AXI4-Stream” and “AXI4-Stream to Video Out” is a streaming interface sending data pixel-by-pixel in raster format. While it may seem unnecessary to convert the RGB video data to AXI-Stream then back, this step ensures the greatest interoperability between IPs. The RGB video stream is a continuous stream of pixels forming lines interleaved by blanking intervals. It lacks a hand-shake mechanism that could stop the stream for a while when the downstream processing logic requires it. AXI-Stream transmits data more efficiently by packing pixel data and framing signals. Furthermore, thanks to hand-shake signals it allows for buffering and stopping the stream momentarily. All Xilinx Video Processing IP use AXI-Stream interfaces, if needed these can be easily inserted into the stream. Due to the streaming nature of the data, different processing blocks can even be daisy-chained by attaching the output of one to the input of another. This is called video processing pipeline.
The interface of the pipeline is an essential design aspect of an HLS processing core. The input, output and control interfaces all need to be modeled in C/C++. Fortunately, the data type modeling AXI-Stream already exists in HLS template libraries.
So our task is writing a processing block (function), that accepts an AXI-Stream RGB video input (argument), and outputs the similarly formatted processed video data (argument). The project requirements are 1280x720@60Hz resolution and a stable video feed.

Now that the project is created we can get on with writing actual C++ code. The following files will be written.
#include "hls_video.h"

typedef ap_axiu<24,1,1,1> interface_t;
typedef hls::stream<interface_t> stream_t;

void edge_detect(stream_t& stream_in, stream_t& stream_out);

#define MAX_WIDTH 1280
#define MAX_HEIGHT 720

typedef hls::Mat<MAX_HEIGHT, MAX_WIDTH, HLS_8UC3> rgb_img_t;

#define INPUT_IMAGE "fox.bmp"
#define OUTPUT_IMAGE "fox_output.bmp"

#include "edge_detect.h"

void edge_detect(stream_t& stream_in, stream_t& stream_out)
{
 int const rows = MAX_HEIGHT;
 int const cols = MAX_WIDTH;

 rgb_img_t img0(rows, cols);
#pragma HLS STREAM variable=img0 depth=1 dim=1
 rgb_img_t img1(rows, cols);
#pragma HLS STREAM variable=img1 depth=1 dim=1
 rgb_img_t img2(rows, cols);
#pragma HLS STREAM variable=img2 depth=1 dim=1
 rgb_img_t img3(rows, cols);
#pragma HLS STREAM variable=img3 depth=1 dim=1

 hls::AXIvideo2Mat(stream_in, img0);
 hls::CvtColor<HLS_RGB2GRAY>(img0, img1);
 hls::Sobel<1,0,3>(img1, img2);
 hls::CvtColor<HLS_GRAY2RGB>(img2, img3);
 hls::Mat2AXIvideo(img3, stream_out);
}

#include "edge_detect.h"
#include "hls_opencv.h"

int main()
{
 int const rows = MAX_HEIGHT;
 int const cols = MAX_WIDTH;

 cv::Mat src = cv::imread(INPUT_IMAGE);
 cv::Mat dst = src;

 stream_t stream_in, stream_out;
 cvMat2AXIvideo(src, stream_in);
 edge_detect(stream_in, stream_out);
 AXIvideo2cvMat(stream_out, dst);

 cv::imwrite(OUTPUT_IMAGE, dst);

 return 0;
}

As shown in Task 1, the HLS flow is going to be followed: the processing function written, a test bench written for it, synthesis, report analysis, C/RTL co-simulation and IP export. The process is iterated until all the requirements are met.

After hardware synthesis completes, review the report for clues on whether project requirements are met. If analysis determines that the synthesized code does not meet the requirements, HLS can be directed towards a better design. This is achieved using directives. These influence the choice HLS makes during synthesis both relating to generated logic and interfaces. In this task, we are going to set the DATAFLOW and INTERFACES directives. To be able to compare the results with and without the directives, a new solution can be created.

Run hardware synthesis one more time and compare the results to that of solution1. Once the design meets the requirements, it can be packaged and exported as an IP. Just choose the Export RTL action in the top toolbar.

The next step is importing the video processing IP in the Vivado project and inserting it into the video pipeline.

Zybo Z7 should now forward incoming video data to the HDMI Out after applying the edge detection algorithm on it. Display any image, movie or just the Windows desktop on the secondary display to see edge detection in action.
This concludes our workshop. Thank you for attending!

Add Digilent IP definitions to Vivado

Select the IP category
Switch to the Repository Manager tab
Click the green plus button
Browse to the zyboz7_workshop/repo/vivado-library folder
Click Select
Vivado will parse the folder and should find IP definitions there
Click OK to close Project Settings.

Open Project Settings from the Flow Navigator on the left

Open Project Settings

Create block design in project

Click Create Block Design on the left toolbar

Use Board interfaces

Click on the Board tab to see the interfaces that are available for the Zybo in board design flow.
Double-click on System Clock
Accept the default of instantiating a new Clocking Wizard
Double-click on HDMI In
Accept the default of instantiating a new DVI to RGB Converter IP

Leave the defaults and click OK

Double-click on HDMI Out

Accept the default of instantiating a new RGB to DVI Converter IP

Add IPs to the block design

Right-click on an empty space in the diagram and choose Add IP

Add IPs to the block design

Repeat for "AXI4-Stream to Video Out", "Video Timing Controller", and two instances of "Constant"

Search for Video and double-click "Video In to AXI4-Stream"

Make external interfaces

Right-click on an empty space in the diagram and choose Create Port. Create an iput port named hdmi_tx_hpd.
Repeat this step and create an ouput port named hdmi_rx_hpd

Video Timing Controller configuration

Double-click the v_tc_0 block
Configure it like shown on the left.

Clocking Wizard configuration

Double-click the clk_wiz_0 block
Open the Output Clocks tab.

DVI to RGB Video Decoder configuration

Double-click the dvi2rgb_0 block
Configure it like shown on the left.

Configure it like shown on the left
The IP should generate a 200MHz clock from the 125MHz on-board clock

Clocking Wizard configuration

Double-click the rgb2dvi_0 block

DVI to RGB Video Decoder configuration

select xlconstant_0 and in the block properties panel rename the it to "zero"

Configure it like shown on the left.

C/C++ algorithm

Synthesis

RTL Simulation

Export IP

Unit test

Analysis

Diagram wiring

Wire the blocks like shown on the next page.
Click-and-hold on one interface and drag it to another to establish a connection.
The Regenerate Layout button on the toolbar to the left of the diagram will re-arrange the blocks into a more readable layout.

Constant configuration

Double-click the newly renamed zero block
Configure it so the Const Val is "0".

Generating HDL Wrapper

Right-click on the block design source file in the project hierarchy and choose Create HDL Wrapper.
Let Vivado manage the HDL wrapper by clicking OK.

Validating the block design

Validate the design by clicking on the corresponding button on the toolbar on the left
There should be no errors reported
If there are, revisit the wiring between blocks

Generating Bitstream

Click Generate Bitstream in the Flow Navigator on the left.
If asked, save the design and confirm that synthesis and implementation should be run.
When bitstream generation is completed, choose "Open Hardware Manager", which is also accessible in Flow Navigator.

Importing constraints

Click the Add Sources button on the left toolbar
Choose Add or create constraints
Click Next
Click Add files
Browse to the provided ZYBOZ7_A.xdc
Make sure the "Copy constraints files" option is ticked.
Click Finish

Program hardware with bitstream

Make sure the Zybo is connected to the PC via USB, it is turned on and the red PGOOD LED is lit
Choose Open Target and Auto Connect from the Flow Navigator on the left

Program hardware with bitstream

Click on Program device on the top
Click Program to download the bitstream file shown there to the Zybo
The green DONE LED on the Zybo should light up

Add Zybo board definition to Vivado HLS

Browse to your Vivado_HLS installation folder.
For example, on Windows:
C:\Xilinx\Vivado_HLS\2016.4\common\config
Or on Linux:
/opt/Xilinx/Vivado_HLS/2016.4/common/config
Overwrite VivadoHls_boards.xml with the one provided among the workshop materials

New Vivado HLS project

Launch Vivado HLS 2016.4 (NOT Vivado 2016.4) from the Start Menu
Click Create New Project
Name the project edge_detect
Place it under zyboz7_workshop\hls_project
Click Next

Create new source and header files

Click New File
Browse to zybo_workshop\hls
Name it edge_detect.cpp
Repeat for edge_detect.h
Click Next

Create new source file for test bench

Click New File
Browse to zyboz7_workshop\hls
Name it edge_detect_test.cpp
Click Next

Create project constraints

Enter 13.5 for clock period
Click the browse button for part selection
Click Boards
Choose Digilent Zybo in the list of boards
Click Finish

Add testbench images

Right-click on Test Bench
Choose Add Files
Select fox.bmp to be added from zyboz7_workshop/hls_project

Run C Simulation

Click on the Run C Simulation button in the toolbar.

Open example project

Launch Vivado HLS 2016.4 from the Start Menu.
On Linux run vivado_hls from the shell.

Click the Open Example Project button on the Welcome Page.

Choose Design Examples/fp_mul_pow2 from the list of projects

Save project

Browse to the location of your choice on your local storage drive
You may choose zyboz7_workshop/hls_project for location.

Click OK

Setting top-level function to synthesize

Click on the Project Menu
Choose Project Settings
Choose Synthesis on the left
Click Browse next to Top Function
Choose edge_detect
Click OK
Click on the Run C Synthesis button in the toolbar to start hardware synthesis.

Create a new solution

Open the Project menu and choose New Solution.

Click on Finish to accept the defaults. Notice that settings from solution1 are going to be copied to the new solution.
Solution2 now becomes active.

Setting directives

Open edge_detect.cpp, which has the function that needs directives applied

On the right side panel, click on the Directives tab

Select stream_in and stream_out interfaces

Right-click on the selection and choose Insert Directive

Choosing directive options

In the dialog that opens choose the INTERFACE directive
For mode option choose axis to instruct synthesis to generate an AXI-Stream interface for stream_in and stream_out.
Similary, select function edge_detect and activate the DATAFLOW directive on it.

Package and export IP

Click on the Export RTL button in the top toolbar.
Keep the defaults by clicking on OK.
Notice the impl subdirectory in solution2 that will be created.

Adding HLS IP to the video pipeline project

Switch back to the video_pipeline project in Vivado 2016.4 we created in task two.
Click Project Settings on the left toolbar
Select IP and Repository Manager
Click the green plus sign
Browse to the HLS project path zyboz7_workshop\hls_project\ edge_detect\solution2\ impl\ip
Click Select and OK

Wiring IP into the pipeline

Right-click on an empty space in the diagram and choose Add IP
Search for and double-click on Edge_detect, which is our HLS IP
Click on the wire between v_vid_in_axis4s/video_out and v_axi4s_vid_out/video_in
Press the Delete key
Wire video_out to stream_in of edge_detect
Wire stream_out to video_in

Wiring control bus

Wire ap_clk of edge_detect to the pixel clock of the pipeline (PixelClk of dvi2rgb)
Create a new "Constant" IP an rename it "one".
Double-click the newly renamed one block

Configure it so the Const Val is "1".
Click the plus icon next to ap_ctrl
Wire ap_start to the "one" Constant block
Wire ap_rst_n to the same "one" Constant block

Download bitstream

Generate bitstream
Click Program Device under Hardware Manager and choose xc7z010.
Click Program to download to programmable logic on the Zynq.

Analyze project structure

Open fp_mul_pow2.h below Includes.

Open fp_mul_pow2.c below Source.
Open fp_mul_pow2_test.c below Test Bench.
Notice that we are in the Synthesis view (upper right corner).

Run C simulation

Click the Run C Simulation button on the toolbar.
Leave simulation options at their default values and click OK

Run C simulation with debugger

Click the Run C Simulation button on the toolbar.
Check the Launch Debugger option and click OK

Debug test bench

Double click on the blue column in line 109 to place a breakpoint at the line that calls the double_mul_pow2 function.
Click the Resume button in the toolbar to run the test bench until the breakpoint is hit

Step into the double_mul_pow2 function

Notice how the variables test_val and test_exp changed before the breakpoint was hit.
Click the Step Into button in the toolbar or press F5 on your keyboard.
Keep pressing F6 to execute the function statement-by-statement.

Exit the debugger

Stop the debugger
Go back to Synthesis view.

Synthesis

Synthesize the design by clicking the C Synthesis button in the toolbar.
Watch the messages in the console until synthesis completes.
Notice the new syn folder in solution1 and the Synthesis Report that opened automatically.

Analysis

Open the Analysis view.

Performance Analysis

Right-click the purple cell in column C0 and row #6, operation tmp_11(+).
Choose Goto Source.

C/RTL Cosimulation

Click on the C/RTL Cosimulation button on the toolbar
Choose "all" for the Dump Trace option
Click OK.
Review the messages in Console

View simulation waveforms

Click on the Open Wave Viewer button on the toolbar
Wait for Vivado to open
Open the Window menu and go to Waveform

Package IP

Click on Export RTL button on the toolbar
Leave options on their defaults
Click OK
Wait for export to complete

Create project tree

Copy the folder called "zyboz7_workshop" to the root of your local hard drive.
If you choose a location other than root, make sure the path has no spaces in it. Take note of the path as you will need it later.

Add Digilent board definition files to Vivado

On Windows browse to: %APPDATA%\Xilinx\Vivado\
On Linux cd to: $HOME/.Xilinx/Vivado/
Copy the provided "init.tcl" there.
If you copied "zyboz7_workshop" to a location other than c:\, edit this file. Make sure the path is absolute and use forward slash "/" as path separator even on Windows.
Save the file and close the editor.

Create video pipeline project

Launch Vivado 2016.4 (NOT Vivado HLS) from the Start Menu

Choose project type

Choose "RTL Project" for project type.

Click Create New Project

Click Next

Name the project "video_pipeline"

Choose zyboz7_workshop/vivado_project for Project Location

Click Next twice

Make sure "Do not specify sources at this time" is ticked.

Click Next.

Choose the Digilent Zybo as target

Select Boards

Choose digilentinc.com for Vendor

Choose Zybo Z7 -10 from the list below.

Click Next

Click Finish

	Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners.
	Page 39 of 39

Microsoft_Visio_Drawing.vsdx
*
+
a
b
c
Cycle 1
Cycle 2

image3.emf
*

+

a

b

c

FF

Cycle 1 Cycle 2

FF

Microsoft_Visio_Drawing1.vsdx
*
+
a
b
c
FF
Cycle 1
Cycle 2
FF

image39.png

image40.png
hdmi_tx_hpd [©-

hdmi_in[D
clk_wiz_0

sys_clock [Clocking Wizard

Video In to AXI4-Stream

image4.png
Broject _Solution Window Help.

DRICBESBRBIIS -2 @

- W@

| 3p0es [T5ER)or At

$

% diectivestel
% sriptecl

4 (= cim

b E build

s & report
PR

s & report

b & systeme

s & verlog

b @ vhdl

proj/soll

=0

20 Synthesis(soll) 22

Synthesis Report for ‘image_filter'

25 Outline 22 {14 Directive|
General Information
4 [Performance

Timing (ns)

=0

General Information Latency (clock cycles)
Date: Fri Oct 14 18:09:55 2016 4[] Utilzation Estimates
Verson: 20154 Bul-141292 on Wed Nov 18 095855 AM 2015 Summary
: ’ Detil
Project: proj
) 4 [Interface
solsfon: soi
N = Summary.
Productomi: 2yma
Torget device xcT020clgigh-L
Performance Estimates
 Timing (n
= Summary
Clock Toget | stimoted | Uncernty
e 600 st 015
= Latency (clock cycles)
2 Summars
o
B Console 53 @) rors| & Warings &E=#E-0-4-0

Vivado HLS Console.

£ C/C++ Indexer: (66%)

image9.png
B Console 33, O] Eors| & Wamings|

vado HLS Console

Conpiling(apec) -/ .o/../-./Tp_mul_poa.c in debug mode
£1 [HLS-10] Rumning c:/Xi1ime/VivadoHLS/2015.4/bin/umrapped/iinsé. o/spcc. exe”
for user "Elod’ on host elap’ (Windows NT_smdes version 6.1) on Thu Nlov 10 14:63:19 40200 261
in directory "Ds/hls/fp_mul,powa/p_mul_pona/pre]_fp_mul_pow2/solutiond/csin/build’
1 [APcC-3] Tap directory id apcc_db
61 [APcC-1] APCC 15 done
Generating csin.exe L
h_result = 4.57764e-005 : bits - Ox3705000000000000 : sign -15, mant - 0x08200000000000

hu_result = 5.06868e+250 : bits = @x73FC515850000000 : sign 532, mant = @xC515850000000
hw_result = -7.6227-111 : bits = @xA910E39140000000 : sign 366, mant = @xBOE39140000000
hu_result = 2.682e+205 : bits = @x6A95628A20000000 : sign 652, mant = @x@5628420000000
hu_result = -1.7309e-150 : bits = @xAGDGAIE350000000 : sign -495, mant = @x@6AIE350000000
hw_result = -1.10749e-225 : bits = @x913A3(65E0000000 : sign 745, mant = @x@A3C65E000000
hw_result = 2.11551e-204 : bits = @x15A5395650000000 : sign 677, mant = @x05395650000000
hw_result = 1.52088e-195 : bits = @x1751015200000000 : sign 647, mant = @x1015200000000
hu_result = 3.58909e+261 : bits = @x763D2DCB40000000 : sign 868, mant = @x@D2DCB40000000
hw_result = 7.93151e-005 : bits = @x3FL4CAF250000000 : sign -14, mant = @xB4CAF250000000
hu_result = -4.16729e-134 : bits = @xA43E4A1B50000000 : sign 434, mant = @xE4A1B50000000
hu_result = 5.09937e+176 : bits = @x64A01B5650000000 : sign 557, mant = 0188650000000
hu_result = 6.96589e-135 : bits = @x23748D8560000000 : sign -456, mant = @x@4BD0560000000
hw_result = -3.3959e+111 : bits = @xD71697D55000000@ : sign 370, mant = @x@697D550000000
hw_result = 1.22026e-079 : bits = @x2FECEFFDAGERRRR : sign 263, mant = @xCEFFDAG000000

hw_result = -4.15363e-081
=% Test passed ***
61 [SIM-1] CSim done with @ errors.

bits = GxAF3FSSIEG0000000 : sign = -, exp = -268, mant = OxFSSEG00000

[i »

image1.png
A DIGILENT

A National Instruments Company

image2.emf
*

+

a

b

c

Cycle 1 Cycle 2

image63.png
/N DIGILENT

image25.png
4" video_pipeline - [C;/zyboz7 _workshop/vivado_
Fie Edt Fow Tools Window Layout View
EAZCL L RIE AL %

Flow Navigator 2 « | Projectm
P Sources.

”

4 Project Manager C\:D:

@ Project Settings 58 Con

&% Add Sources. =4 Sim

image26.png
4" Project Settings

~

(® Add drectories to the it of repositories. You may then add additional IP to a selected
repository. If an IP i disabled then a tool-tip wil alert you to the reason.

Repositories

image27.png
- video_pipeline - [C/zyboz7_workshop/vivado_project/video_pipeline/video_pipelinexpr] - Vivado 20164 o x
Fle Edt Fow Tods Wndow Layout Vew Heb
EALL L RIE S AKX 19 - JELTNTYS N ® Ready
Flow Navigator ? « Project Manager video_pipeline ? X
Az® Sources 2 -0 X | [E projectsummary x| IR
~
— a : =i RE ——— 5
@ Project Settings o e o Project name: video pipeline
&% Add Sources 565 Smulation Sources Project location: C:/zyboz7_workshopjvivado_projectjvideo_pipeine
) Language Templates. @ sim_1 Product famiy: Zyng-7000
; 1P Catalog Project part: 27-10 (xc72010dg400-1)
Ll
4 TP Integrator 4" Create Block Design X
Create Block Design
s o Please speafy name of block design.
Open BlockDesign Hierarchy |1 k =
& Generate Block Design
Properties. Design name: design_1
4 Smuation
. Jo:part0: 1.0
. & <Local to Project> -
5 Smulation Settings lpivivado-boards/new
@ Run Simuation 5 Design Sources. v| m
4 RTL Analysis
@ Eaboration Settings selectan @ Implementation
> [OpenElaborated Design — Status: Notstared
4 Synthesis < >
@ Synthess Settngs DesignRuns 2_owe x
> Run Synthesis -
A Name Constraints Status ~ WNS TN WHS THS TPWS TotalPower FaledRoutes LUT FF
> @ Open Synthesized Desigr Lo — et
. o & = impl_1 constrs_1 Notstarted
&3 Implementation Settings >
D Run Implementation 4
> ¥ Open Implemented Desig < 5
olrorem x e) v 57d Console | © Messages | [Log | (3 Reports', 9 Design Runs |

Create and add an IP subsystem to the project

image28.png
/. video_pipeline - [C;/zyboz7_workshop/vivado_project/video_pipeline/video_pipelinexpr] - Vivado 20164
Fie Edit Flow Tools Window Layout View Help

BEB e RhX @D D> NS K I G [5efutiat

zeX ®

Flow Navigator 2«

4 Project Manager
@ Project Settings
% Add Sources
@ Language Templates
4F P catalog

Block Design - desion_1 *

Board
T & [Fe * x>
& zybo z7-10
@ Clocks (1 out of 1 connected)
@ System Clock
2@ GPIO (0 out of 4 connected)
¥0 2RGBLEDS
-0 4Buttons
¥0 4LEDs.
¥0 4 Switches.
3-@ HDMI (2 out of 4 connected)
@ HOMIIn
¥ HOMI In HPD.

-0 x

¥ HDMI out HPD
£-E Pmod (0 out of 4 connected)
%0 Connector JA

v

& Sources | Design | & Signals, [l Board |

CROQU NG IHLDIRE L LI T

image29.png
ﬂ

ot ot e G b 8.

e o
X oo P
& o pores

ez 10 sepeniery gy vtanan/cee|

srvies pipesise/vises pipesie.secasse]

image30.png
5+ Diogram x| oo x
3 4 design_1
o
o
Y
§
o
[
o
= Ths design s empty. ress the button toocd P
=
&
=
E]
[~ W Fropertes Gt
[X Delete Delete
e Im oo culec
m e Curlev _oex
B — L Curle =
g IP repositories R SelectAl Ctrl+A

e reading Conponent: see "ilim:coreEx|[8 aggpn Cpy |lorkshop/zepo/vivado-library/1p/Prods/ 2modSD v |

77] Unable to read I? file d:/zybovorks) g [Prodsp_v1_o/component.xml. This IP will not be

 reading Component: see 'xilin:corsExcl rikshop/repo/vivado-1ibrary/ ip/Puods/ PuodWIFL_v:
771 Unsble to read I? file d:/zybo_vorks| ¥ ‘AR DesEn 6 lemodWIFI_vi_0/component.xml. This I2 will not bf
sex 1P repository 'd:/zybo_workshop/zepo| CreateHerarchy.

Create Comment

>/video_pipeline/video_pipeline.sres/soul

image31.png
4" Create Port

Video Timing Contraller

Create port and connect t to selected pins and ports.

Port name: hdmi_tx_hpd
Diection: nput ~
Type: Other -
Create vector: from 313 ©
Frequency (MH2):
Interrupt type: Level Edge
Sensitivity: Active High Active Low
Connect to matching selected ports.

~

image32.png
Detection/Generation | Defauit/Constant | Frame Sync Positon

‘Optonal Features
[tncude AXT#Hite Interface
[tncude INTC Inerface:
] tnteraced Video Support
[Synchronize Generator to Detector o to fsync_in
Max Clocks Per Line 4096~ | MaxLines e Frame [4036~
Frame Syncs P

Enable Generation

‘Generation Optons Detection Options

Field ID Generation Field ID Detection

Vertical Bk Generation Vertical Bk Detection

Horizontal Bank Generation Horizontal Bank Detection

Vertical Sync Generation

Vertical Sync Detection

Horizontal Sync Generation

Horizontal Sync Detection

 Active Video Generation Active Video Detection

[Actve Chroma Generation [Actve Chroma Detection

 Auto Generation Mode

image33.png
Component Name |design_1_ck_wz_0_0

The phase is calcuated reative to the active input dock.

outputcoc QUPFrEA(HD Phase egrees)
ot |0 20,000 0.000 0.000
Odkouz | 100.000 0.000
dous | 10000 0.000
dows | 10000 0.000
Gous | 10000 0.000
dkous | 10000 0.000
dowr | 10000 0.000
USE CLOCK SEQUENCING CrTeEt
Saurce s
Output Clock Sequence Number Ot
5 O Automatc Contol OFF-Chp
T O User-Controled On-Chip
1 O User-Controlled Off-Chip.
T
T
T
Enabie Optonal Inputs uiputs ResetType
eset [lpower down [iput ck stopped © actve ich

locked [] ckbstopped O ActiveLow

image34.png
Component Name design_1_dvizrgh_0_0
[Enable DDC ROM
[Enable serial dock output
[7] Add BUFG to PixelCk
[Resets active high
TMDS dock range
O >=120 MHz (1080p)
O <120Miz
© <80 Mz (7200)

Preferred resolution

© 1280x720
O 1600x900
O 1280x1024.

O 1920x1080

image35.png
£F Re-customize IP

RGB to DVI Video Encoder (Source) (1.3)

i Documentation [TP Location

Component Name | design_1_rgb2dvi_0_0

[Reset active high

[Generate SerialCk internally from pixel dock.
MMCM/PLL

OmMcM @ P
TMDS dlock range

O >=120MHz (1080p) @ < 120 MHz (720p)

image36.png
4" video_pipeline - [C/zyboz7_workshop/vivado_project/video_pipeline/video_pipelinexpr] - Vivado 20164 hd - u} X
Fie Edt Fow Toos Window Layout View Hep Q- Quick Access
EAIELEL RIEZ 2 A1k § 19) JELTTIE RN ® =7
Flow Navigator 2«

P Board 2_Douwe x
~ =
oo =& Ee * >
‘) . @ zybo z7-10 Al e
@ Project Settings 5@ Clocks (1 out of 1 connected) R
Sources @ System Clock
u Ao =-@ GPIO (0 out of 4 connected) -
@ Language Templates -0 2RGBLEDS Y
4 1P Catalog +40 4Buttons K
90 4LEDs ﬁ'
50 4 Switches
3-8 HDMI (2 out of 4 connected) 0y
% Create Block Design @ HOMIIn 1a
5% Open Block Design -0 HDMI In HPD. -
M0 A oot =
& Generate Block Desin "4 Sources | Design | & Signals, @l Board | || s
- S - & - - to RGB Video Decoder

4 Simulation Block Properties 2_0Ow x @ Clocking Wizal

€5 Smuaton Settings « = HR] = ro =
@ Run Smuation & zer0 i

4 RTL Analysis Name: zer0 : “onstan

@ Baboration Settngs Parent name: design_L @

» g% Open Elaborated Design

General | Properties | IP |
4 Synthesis
5 Synthesis Settings. :("'* =
) = copy_bd_objs / [get_bd_cells [one}]
& Runsynthess e set_property name zero [get_bd_cells onel]
b [@¥ Open Synthesized Desigr -~ set_property -dict [list CONFIG.CONST_VAL {0}] [get_bd_cells zero]
0] sec propercy location (¢ 1153 52} [gec_bd_cells zero]
4 Implementation & delete_bd_objs [get_bd_cells zero]
5 Implementation Settings % set_property name zero [get_bd_cells one]
D RunImplementation i] < >

> ¥ Open Implemented Desig

Type a Tcl command here

4 Program and Debug v| | B Td Console | © Messages | HLog | 5 Reports | 3 Design Runs |

‘Block Pin: dout

image37.png
Constant (1.1)

 Docmentaton [Locaton

Component Name |design_t xlconstant.

Constwidth |1 [1-4098]

image38.png
4" video_pipeline - [C/zyboz7_workshop/vivado_project/video_pipeline/video_pipelinexpr] - Vivado 20164 hd - u} X

Fie Edt Fow Toos Window Layout View Hep Q- Quick Access

“«

EACIEEE L RIAEE AL -3 4P JEELTEEeN e\ ® Ready
Flow Navigator 7«
A=
4 Project Manager

@ Project Settings

% Add Sources

@ Language Templates

4F 1 catabg

i

3 create Block Design
5% Open Block Design
& Generate Block Design

@ boad | ﬂﬂ |i@ Properties

4 Smulation
5 Smulation Settings
@ Run Simuiation

4 RTL Analysis
3 Baboration Settings
b g% Open Haborated Design

4 Synthesis
@5 Synthesis Settings x
> Runsynthesis S| CERROR: [Common 17-39] 'validate bd design' failed due to earlier errors. ~
> [@F Open Synthesized Design - connect_bd_net [get_bd_pins v_vid_in_axi4s_0/aclk] [get_bd_pins dvi2rgb_0/PixelClk]
- regenerate_bd_layout
4 Implementation 0I| ©validate ba_design
€ mplementation Settngs &8l| | WARNING: [BD 41-927] Following properties on pin /dvi2rgb_0/PixelClk have been updated from connected ip. They may not be synchronize

> fun [@| § CLKPOMAIN-design 1 dviZrgb 0_0_PixelClx

> @F Open Implemented Design

Type a Tcl command here
Td Console | © Messages | 5 Log | (2 Reports | 3 Design Runs |

4 Program and Debug
A Dibebennen Cabbinnn. hJ

image41.png
4 video_pipeline - [C;/zyboz7_workshop/vivado_project/video_pipeline/video_pipelinexpr] - Vivado 20164
Fie Edit Flow Tools Window Layout View Help

“«

D D> ¥ B K| L (G [25vefoutLayout

e ®

e - [u} X
Q- Quick Access
Ready

28 woRhhX @
Flow Navigator 2«
Az e
4 Project Manager
5 Project Settings
% Add Sources
@ Language Templates
4F 1 catabg

& create Block Design
5% Open Block Design
& Generate Block Design

4 Simuiation
5 Smulation Settings
@ Run Simuiation

4 RTL Analysis
3 Baboration Settings
b g% Open Haborated Design

4 Synthesis
3 Synthesis Settings
> Run Synthesis
> @F Open Synthesized Desigr

4 Implementation
&5 Implementation Settings
D Run Implementation
> @ Open Implemented Desic

4 Program and Debug

A Dibebennen Cabbinnn. hJ

i

(ERROR: [Common 17-39] 'validate_bd design' failed due to earlier errors.
connect_bd_net [get_bd_pins v_vid_in_axids_0/aclk] [get_bd_pins dvi2rgb_0/PixelClk]
regensrate_bd_layout

©validate_bd_design

€ CLK_DOMAIN=design 1 dvi2rgb_0_0_PixelClk

Type a Tcl command here

WARNING: [BD 41-927] Following properties on pin /dvi2rgb_0/PixelClk have been updated from connected ip.

They may not be synchronized w

@ TdConsole | © Messages | [Log | % Reports | 3 Design Runs |

image42.png
Block Design -design_1

AT =S e R
55 Design Sources (1)

& Constraints.
£ Smulation Sources (1)
@sm_1(1)

&= Diagram x

5] dydeson s

focsion_1 (desin_L: Ay
& [Source Node Propertes.. Ctrl+E

@ OpenFie A0
View Instantiation Template:
‘Generate Output Products...
Reset Output Products..

Replace Fie.
Copy File Into Project

Copy Al Fies Into Project At
Remove e from Project... Delete.
Enable Fie Alt+Equals.
Disable e Alt+Minus
Herarchy Update: »
‘Sources | Refresh Herarchy

1P Herarchy. »
SetasTop

Sources | Set Fie Type.

i

sec_propercy —d:
connect_bd_net.
regenerate_bd_L:
validate_bd_des.

SetUsedIn

Edit Constraints Sefs...
Edit Smulation Sets.
Associte ELF Fies...

B Add Sources.. AlteA

47 ReportPStatus.

i

leel1s xlconstant_0]
pins clx_wiz_o/reset]

b iy @ S B 2

image43.png
Fle Edt Fow Tods Window Layout Vew Help
2B 0OREX IPDUBKEDG Exmtoor | XN ®
Fow Navigatr «| | Mockbesgn desna-

4 Project Manager

g";“;’“"’s Add Sources

e This uides you trough the process of adding and areating sources or yourpraject
£k P Catdog

+ 1P Integrator
2 Create BlockDesign
5% Open Block Design
& Generate Hock Desgn

(© Add existing bock design surces

4 Simuaton
3 Smuiaton Settngs © Addexstng P
@ Run Smuaton

4 RTL avayss
5 Ssboraton settngs
> 5% Open Esborated Design

4 Synthess

N il XILINX

> B Open Symthesized Desion

4 mplementaton
5 Inplementation Settings

image44.png
video_pipe

Fle Edt Fow Toos Wndow Layout View Hebp

Q- Search commands

EAICEL L RIZ A 51 5 19) JELTRE RN ® ‘Synthesis and Implementation Out-of-date more nfo.
Fon Navigtor «| | BlockDesign desgn 1 x
B4 sources _oux oo x
AT S wet R 3] i desion_1
— 545 Design Sources (1)
2 Create Bockbesgn @ design__wrapper - STRUCTURE (éesgn_{_nrzpper.
Block Design 65 Constraints (1)
B ooen &5 constrs_1 (1)
& Generate Hock Design 3 2ybo_Bxéc
5 simaton Sources (1)
4+ smiaton Sam 1)
@ Smiaton settngs
@ Run Smuation R F— | F— (= ey
[Hierarchy | 1P Sources | Librares | Compie Orcer | P
R At & Sources | [Desn | i Sionals | @l Board S
QEromers = e

» B Open Baborsed esgn

4 Synthess
G Synthess Settings
$ RunSynithess
© g% Open Synthesized Design

i

4 Implementation
3 mplementation Settings
> Run Implementation
> 5 Open Implemented Design

4 Program and Debug
5 istesm Setings

¥) Generate Bistream

4" B vercare Manager

B Openerget
@ ProgramDevice
Add Configuration Mer

=g
=g

zero_dout
Parentname: design_1
Driver: G zerojdout

CROQAW S Y RHLIDHERR

General | Propertes | Prns |

Td Console —oex
[connect_bd_nev [get_bd_pins zezo/dout] [get_bd_pins clk_wiz_0/zeset] B
| regencrate bd_leyous

=

©save_bd_design
£ rote

:/2ybo_workshop/vivado/video_pipeline/video_pipeline.srcs/sources_1/bd/design_1/design_1.bd>

B[2 71
Tl Console | © Messages | [Log | [Reports | 9 Design Runs |

comnand here

Generate 2 programming file after implementation

image45.png
< ULF

7 RU ey

5% Open Synthesized Design General | Properties |
4 Inplementation Desmpping
& implementaton settngs | || O e
> Run Implementation
> 5% Open Implemented Design
4 Program and Debug

image46.png
Fle Edt Fow Toos Wndow Layout Vew Heb

B o R X D> D> XS X T @ [Socfutiayout ~ | P @& N | & Dashboard v | &)
Flow Navigator </ || Hardware Manager locahostjxin_tcf/Digent/210275855264

QT @ There are no debug cores, Program devie Refresh devce

+ Plntegrstor
7 Creste o Desion
5% Open HockDesign
) Generte HockDesign

az®

LAl]

Neme Status
- § locahost (1) Comected
£ Ho xiinx_tef/Diglent/210279856264A (2) Open

@ am_cep 0 0) A
4 smaten I O o
3 Smuaton Settings 2 XADC (Systen
@ Run Simaton o EESEE
Selecta bistream programming fie and dowrload t to your hardware device. You can optional seect a cebug
4 RTL analysis Hardnare Device roperties | | probes fie that corresponds to the debug coes contained n the bitsream programming e
G Eaboration Settings « >
(5% Open Haborated Design @ xc72010_1 Bitstream fie: 2ybo_workshop/vivadojvideo_pipeline/video_pipeine.runs/mpl_t/design_1_nrapper.bi|
4 Synthess - ©crmon_t]| Debuaprobes fe
& Symthesis Settngs Part: 72010 Enable end of startup check
D Run Synthesss D code: 13722093,
b [@% Open Synthesized Design |- R length: 6 -
™ (oo (mmCorccien]
4 Inpenentaton
€ inplementaton settngs Td Console
> Run Implementation [| currenc_hw_device (lindex (ger_us_devices] 1]

image47.png
1 = |config

B o s v
* I-:l & cut x I l 7 New item ~ a 4 Open
w L

Copy path 7] Easy access Edit
Pin to Quick Coy Paste Move Coj Delete Rename Properties.
access v El BespaiTiat to~ tup'y M folder Pe 5”'5‘”
Clipboard Organize New Open
« v A | > ThisPC > OSDisk (C) > Xilinx > Vivado HLS » 20154 > common > config
" workspace A Name
= This PC [VivadoHis_boards.xml
" Desktop [gui config_schedule.xml
Documents [] gui_config_rtlxml
& Downloads [gui_config_interface.xml
o [aui confia dataflow xml

image48.png
/' New Vivado HLS Project

Project Configuration
Create Vivado HLS project of selected type

Project name:

edge_detect

Locstion: | layborT workshop\ il projec]

<Back

Einish

image49.png
4 New Vivado HLS Project O X
Add/Remove Files +fy
Add/remove C-based source files (design specification)
Top Function: Browse...
Design Files
Name CFLAGS Add Files...
e
Eledge_detect.cpp e
edge_detecth
Edit CFLAGS...
Remove
< Back Next > Einish Cancel

image50.png
4 New Vivado HLS Project

Add/Remove Files

Add/remove C-based testbench files (design test)

"

TestBench Files.

Name CFLAGS
edge_detect test.cpp

Add Files...

New File...

Add Folder...

Edit CFLAGS...

Remove

< Back

Next >

Finish

Cancel

image51.png
4 New Vivado HLS Project

Solution Configuration

Create Vivado HLS solution for selected technology

Solution Name: | solution1
Clock
Period:| 13.5

Uncertainty:

Part Selection

Part: Digilent Zybo (xc7z010¢cig400-1)

< Back Einish Cancel

image52.png
Oit B E feRGR-HEN=H 2R J~E::]
25 Explorer 58 $ =8
v & edge_detect
> @ Includes
v & Source /- Open
-edge_detect.c|
%mi:’a:(mnp 4 1 « Local Disk (C) > zyboz7 workshop > his_project v O Search his_project
~ EalicstlBench Organize = New folder
[& edge_detect teg ~
& foxbmp A Name Date Type Size
> €3 solution1 # Quick access a
\ & solution2 ReDeskiop A edge_detect 12/08/2017 16:04 File folder
1 Downloads [] edge_detectcpp 12/08/2017 16:03 CPP File 1K8
[] edge_detecth 12/08/2017 16:03 HFile 1K8
Documents [] edge_detect_testcpp 12/08/2017 16:04 CPP File 1K8
& Pictures » (8] fox 07/08/2017 18:11 BMP File 2701KB
& National Instrume: vivado_his 12/08/2017 16:08 Text Document 63K8

image53.png
3 edge._d
"hls_vide

3 typedef ap_axiu<2!
4 typedef hls::stre:
5
& void edge_detect (:
7

image5.png
/vado HLS - proj_fp.

_mul_pow2\fp_mul.

Edit_Project Solution Window _Help|

VIVADO, =
HLS
Select an Example
Quick Start
4 22 Design Bxamples
& 2D_convolution_with linebuffer 2
b Ca FFT
=L fup s
% & _builtinctz
© wiite
Create New Project Open Project Open Bxample Project & oi_master
& istream_no_side._channel_data
& oistream_side_channel_dota
5 > @
Documentation . S
& bpsat roj
. & his streom
& uE » £ linear_algebra ionivid
167 2
Tutorils User Guide Release Notes Guide
puffe
. Proj
€2 Coding Style Bamples Proj
<Back Next> Enish | [Cancel

image6.png
/. Examples.

Specify Example Project Location

‘Specify where to create the example project.

Brject nome: [fpmuLpovd

Location: | d:\his\fp_mul_pow]

image54.png
4 Project Settings (edge_detect)

ElGeneral
@ Simulation
B Synthesis

Synthesis Settings

Top Function: | edge_detect]

Browse...

Synthesis C/C++ Source Files
Name CFLAGS

2 edge_detect.cpp
[edge_detecth

Add Files...
New File...
Edit CFLAGS...

Remove

OK

Cancel

image55.png
4 Vivado HLS - edge_detect (C:\zybo_workshop\hls_project\edge_de

File Edit Project Solution Window Help
@ Project Settings...

i Index C Source

£ Run C Simulation

& Add Source...

(7 New Source...

@ Add Test Bench...

(7 New Test Bench...

% Add Test Bench Folder...

Set Active Solution...
Close Inactive Solution Tabs

&7 Compare Reports...

bvusiay

=0

5 edge_
Synth:

Gener:
Date:
Versic
Projec
Soluti
Prodt
Targe

Parfor

image56.png
L/

RO hEEOs-Uad - BFeo 35 Debuy [TSymthes]) o Anaysis
) Synthesis(olutionz) [2] edge_detectcpp & =8 i

1 winclude "edge_detect.h” A
2

5 void EFTRTETE (strean_t& stresn_in, stresn & stresn_out)
E

s " int const rows - MAX_HEGHT;
& int const cols - MAXMIDTH; LS INTERFACE s por]
7 rgb_img_t ingd(rous, cols); °‘“ B por
5 rgh ing t ing1(rows, cols): . i

9 rebiingt ing2(rowse, cole): O HLS INTERFACE axis port|
1o rgbing t ing3(rous, cols):

i1 hlsi:avideaaiaf(strean in, ingo); =

12 tColor<HLS_RGB2GRAYS (ingo, ingl);

13 bel<1,0,5 (ingl, ing2);

1s tColor cHLS_GRAYSRGB (ing2, ing3);

15 Hat28Xhidea(ings, strean_out); =

15 }

image57.png
[+] Vivado HLS DirectveEdtor S5

Directive

INTERFACE =

register (optional): =]

depth (optional:

port (required): stream,in,sream_out
clock name (optional):

image58.png
v PO

$ =8 :FdExpo L RiLlectepp |9 edge detect tes | Synthe:

Vivado HI S Report Comparison
4 Export RTL Dialog X

Export RTL 8

Format Selection

IP Catalog] v| | Configuration...

Options

Evaluate Verilog v

Do not show this dialog box again.

OK Cancel

image59.png
(iSieckpestyl A\ Project Settings X

AlLIP

General” Repository Manager | Packager

General (@ Add directories to the list of repositories. You may then add additional IP to
@\ a selected repository. If an IP is disabled then a tool-tip wil alert you to the
reason.

& orkshopjrepo/vivado-ibrary (Project)
Recent: | © E:/Pforzheim Worksho... v | [) =i g ¢ W

Directory: |C:\zyboz7_workshop\hls_projectledge_detect

image60.png
TR

Ve g Gono e Ve

image61.png
edge_detect_0

Constant

Edge_detect (Pre-Production)

v_vid_in_axi4s_0

Sink) (Pre-Pro

image62.png
Resolucion

1. Make su
(OEE=eTm {2, Menua)
¥ Generate Bitstream

open_bd_de

image7.png
File Edit Project Solution Window Help
CiE @& EXRGREGLBBRIIS-EE -l Fiei®

R bplorer 2 & = 0 |(B pmipowztetc [fmilpowze 3

« & prifo.mulpon? 135~ doubte daUbE BUILpONE(double x, intis_t n) L vBRRE e Rk ¥
4) Includes 5 ol powzh)
b (B CXilinx/Vivado_HLS/20154finclud || 127 #pragma AP inline // Always inline this function “ABSG
» (B C¥imVivado_HLS/2015Afinclud || 128 double_num_t x_num, prod; oot mul_powalfost, . 1o
b (& C/Xilinx/Vivade_HLS/20154/includ || 129 double_mul_pow2(double, intl6

y o 130 x_num.fp_num = x;
> (B CilmVivado HLS/20154/msys! |15y cui acol. Fp_naTH_No_BoUNDS,_TESTS

> (8 CotlimVivado HLSZ2015.4/mays/|| 150 56 (x_numbexp == @xFF || x_num.bexp == @) // pass through Nall, THF &
b (8 CXilinVivado_HLS/2015.4/msys/||| - 133 prod. fp_num = x_num.fp_num;
+ (5 CiimVivado HLS/20154/meys/| | 134 else SF (n om0 88w num bexp >= 2047 - n) { // detect and handle over
o (B CXilimeVivado_HLS/2015.4/msys/ || 135 prod. sign = x_num. sign; //

B ottt M a5 PrOSree = 00T) w/wie

> (B CiimVivado HLS/20154/wint4 |13} else iF (n < 0 &% x_num.bexp <= ABS(n)) { // handle underflow (doesr
& GXilVivado, HLS/20154/winsd | 120 prod.sign = x_nun.sign; //
4 (B Dhistp_mul_pow2/fp_mulpow? || 142 prod.bexp - 67 77 +/-z880
3 D:/hls/fp_mul_pow2/fp_mul_ 141 prod.mant = @; 1"
B omste mpotiomtrd [
= souee 143 #endif // AESL_FP_MATH_NO_BOUNDS_TESTS not defined
4 8 Source ol
[& fo_mul_pow2.c 105 prod.sign = x_num.sign;
+ 2 TestBench 146 prod.bexp - x_num.bexp + 3
2 fo.mul_pond_testc 1 predlmnt = ot
“ bs“"* ""‘m’ e 149 return prod.fp_num;
2 # constaint i 3
9 directivestcl 151

5 Console 57 @) Erors| & Warnings,
Vivado HLS Console

image8.png
7 c
£ (1
pri
pri

pri

3 e]’
pri

'/ Gef

Options

Launch Debugger

Build Only

Clean Build

Optimizing Compile

Input Arguments

Do not show this dialog box again.

image10.png
Bair-aaiA-BFiei®

ow2.

(7 Cominion e AT

C Simulation
a
) Optimiing Comple
Input Arguments
Do not show this dialog bo agin.

image11.png
Ele Edit Project Solution Bun Window Help
LT N

45 Debug 52 15 Explorer| i i 9 Breakpoints | il Registers| & Expressions | @ Modules| =0
4 [£] proj_fp_mul_pow2.Debug [C/C++ Application] LHE| X% O v
4 B csimexe [8224]
4 P Thread #1 0 (Suspended : Breakpoint)
= main(at fp_mul_pow?_test.c:102 0x40139b
4 gdb(.8)

Value
51218111423504059¢+303
7

)

- em_ent

(8 fp_mul pow2.c | T fp_mul_pow2.h 12! double_mul_pow2_csim.log. =8

CERRY % ¥
o stdioh

/7 simple test program to validate SW models and for re-use in RTL co-simulation o stdibh
int main(void) U mathh

i o fpmulpow2h
NUM_TESTITERS

#define NUM_TEST_ITERS 16

£16_t test_exp 3
double_num_t hw_result, sw_result;
unsigned 1, err_cnt = 0;

© main(void): int

For (3= 0; i < NUM_TEST_ITERS; i+t) {
// Get result from M4 version
hw_result. fp_num = double_mul_pow2(test_val, test_exp);
// Generate expected result
Su_result.fp_num = test_val * pow(2.0, test_exp);
7/ Print out result
printf("hu_result = ¥13g : bits = @x¥16l1X
hw_result. fp_num,
(unsigned long long)hw_result.raw bits);
printf("sign = %, exp exdo1a11x",
hw_result.sign ?

© Console 8] Tesks| 2] Problems| O Exccutables| [Memory| BX % BEEES rBE-0-4Z =0
proi_fp_mul_pow2.Debug [C/C++ Application] csim.exe

image12.png
File Edit Project Solution Run Window Help
0N DR 3 E | ([P Debug) 5] synthesis 6 Analysis
4 Debug 25 Explorer| i e 96 Breakpoints| !} Registers| 7 Expressions| i Modules| =&
4[] proj_fp_mul_pow2.Debug [C/C++ Application] LEB|FR%R| O*
4 B cimec(824]
4 P Thread #1 0 (Suspended : Breakpoint)
= main) at fp_mul_pow2._test.c:109 04013
4 gdb(.8)

Value

s
s
[

(.
o
oo

= em_cnt

(8 fp_mul pow2.c | T fp_mul_pow2.h 12! double_mul_pow2_csim.log. =8

9 T S e <
97 #define NUM_TEST_ITERS 16 : PERRW %
% - o stdioh
99 // Simple test program to validate S models and for re-use in RTL co-simulation o sdibh
100% int main(void) U mathh
U fpmul pow2h
double test_va e
int16_t test_exp

doublz_num_t h_result, su_result; o main(ueid): int
unsigned 1, errcnt - 03

For (3= 0; i < NUM_TEST_ITERS; i+t) {

// Get result from H version

hw_result. fp_num = double_mul_pou2(test_val, test_exp);

// Generate expected result

Su_result.fp_num = test_val * pow(2.0, test_exp);

7/ Print out result

printf("hu_result = ¥13g : bits = @x¥e1611X
hw_result. fp_num,
(unsigned long long)hw_result.raw bits);

printf("sign = %, exp exdo1a11x",
hw_result.sign ?

© Console 8] Tesks| 2] Problems| O Exccutables| [Memory| BX % BEEES rBE-0-4Z =0
proi_fp_mul_pow2.Debug [C/C++ Application] csim.exe

image13.png
Ele Edit Project Solution Bun Window Help

LT IS l © (35 Debug] | Synthesis 6 Analysis
45 Debug 52 15 Explorer| i 9 Breakpoints | il Registers| & Expressions | @ Modules| =0
4 [€] proj_fp_mul_pow2 Debug [C/C++ Application] 4B & R%R L v
4 B cim.exe [5804]
4 P Thread #1 0 (Suspended : Breakpoint)
= main(at fp_mul_pow?2_test.c:102 0x40139b
o gdb78)

Value
51218111423504059¢+303
7

)

= em_cnt

(8 fomulpow2c | fp_mulpow2.h double_mul_pow?_csim.log = a
95 #include "fp_mul_pon2.h" PELRRE o %
%6 B
57 #define NUM_TEST_ITERS 16) stdioh
5 o stdibh
99 // Simple test progrom to validate SW models and for re-use in RTL co-simulation o mothi
100 int main(void) 2 fpmulpowzh

— # NUM_TEST_ITERS

intls_t test_exp = -15; © main(void): int

double_num_t hw_result, sw_result;
unsigned 1, err_cnt = 0;

for (1= 03 1 < NUM_TEST_ITERS; i+4) {
/1 Get result From Wi version
h_result. fp_num = double_mul_pou2(test_val, test_exp);
// Generate expected result
Sw_result.fp_num = test_val * pow(2.0, test_exp);
/7 Print out result
printf("hu_result = ¥13g ¢ bits = ex¥e1611X
hw_result. fp_num,
(unsigned long long)hw_result.raw_bits);
printf("sign = %c, exp = ¥5d, mant - exWIALIX,

D Console 87 Tasks| (2 Problems| @ Erecutables| 0 Memory| X% BESE ME-0-42°0
proj_fp_mul_pow2.Debug [C/C++ Application] exe

image14.png
Hle £t Project Solution Window Help
TXRORCEBR BT E-TS 35 Debuy [T5pmthese])
[€] fp_mul_pow2_tes [l fp_mul pow2.c |) Synthesis(solut 52 2 8= Outlin 52 [Directi

Synthesis Report for ‘double_mul_pow2"

GeneralInformation

4] Performance Estimates
Timing (ns)

Date: Thu Nov 10 15:51:44 2016 Latency (clock cycles)

Version: 2015.4 (Build 1412921 on Wed Nov 18 09:58:55 AM 2015) 4 [Utifiation Estimates

Project: proj_fp_mul_pow2 £ summary

Solution: Detail

Product family: 4 [Interface

Target device: £ Summary

General Information

o (B CXilin/Vivado_HLS/20154/win || Ferformance Estimates

4 (3 DyM/fp_mul_pow2/fp_mul_pov|| = Timing (ns)
» (2 Du/blsfp_mul_pov2/fp_mul_
B fp_mul pow2h
£ Source
[fp_mul pow2e
Test Bench
) fp_mul pow2_test.c

) Summary
Clock Target Estimated Uncer
apck 500 420

£ Latency (clock cycles)
) Summary
4 % constr Latency Interval

Y directivestel i e min_max | Tupe
« i

5 Console 57 @) Erors| & Warnings,
Vivado HLS Console

@I [SCHED-11] Starting scheduling ...
@1 [SCHED-11] Finished scheduling.

@1 [HLS-111] Elapsed time: 0.043 seconds; current memory usage: 71.5 MB.

61 [HLs-10]

@I [HLS-10] -- Exploring micro-architecture for module 'double_mul_pow2’

61 [HLs-10]

I [BIND-100] Starting micro-architecture generation ...

I [BIND-101] Performing variable lifetine analysis.

@I [BIND-101] Exploring resource sharing.

1 [BIND-101] Binding ...

@I [BIND-100] Finished micro-architecture generation.

@I [HLS-111] Elapsed time: 0.03 seconds; current memory usage: 71.5 MB.

61 [HLs-10]

I [HLS-10] -- Generating RTL for module 'double_mul_pow2’

61 [HLs-10]

1 [RTGEN-500] Setting interface mode on port 'double_mul_pow2/x’ to 'ap_none’
1 [RTGEN-500] Setting interface mode on port 'double_mul_pow2/n’ to 'ap_none’.
@I [RTGEN-500] Setting interface mode on function 'double_mul_pow2’ to 'ap_ctrl hs’
I [RTGEN-100] Finished creating RTL model for 'double_mul_pow2' .

T [HLS-111] Elapsed time: 0.043 seconds; current memory usage: 71.5 MB.

I [HLS-10] Finished generating all RTL models.

@I [WSYSC-301] Generating RTL SystenC for 'double_mul_pow2’

@I [WVHDL-304] Generating RTL VHDL for 'double_mul_pow2' .

T [WVLOG-307] Generating RTL Verilog for 'double_mul_pow2' .

T [HLS-112] Total elapsed time: 5.700 seconds; peak memory usags

<[i

proj_fp_mul_pow?/solutionl

image15.png
/. Vivado HLS - proj_fp_mul_pow2 (DAhis\fp_mul

Ele Edit Project Solution Window Help

| S0y sy (i)

BRAM DSP FF LUT Latency
© doublemul_pow2 0 0 72 3 1

) Synthesis(solut | =’ Performance(sol 5% i

Carrent Module : double mul pow?

Operation\ Control Step

tmp_7(icmp)

omp_11.(+)

tmp_10 (partset)

st (icmp)

1
2
3
a
5 | wmp2(-)
6
7
B
B

se1_tmps (1cmp)

10 | sel_cmpd (1omp)

11 sel_cmps (1)
12 | wmp_s()

13 sel_cmpl demorgan(l)

P Performance Profile 52 | Resource Profile | = a

14 | sel_omp2 (select)

Pipelined Latency _Initiation Interval lter|

© double_mul_po - 1 2 -

15 rev()
16 | sel_cmps (1)

17 | cmpl(s)

18 | sel_mp7(s)

19 | prod 1_in(select)

=0

Perarmance Reserce

0 roperties £

image16.png
: %5 Debug [Synthesis

8 fo.muLpowztes —— ==

Carrent Module : double mul pow?

Operation\Control Step
n_read (read)

x_zead (read)
<mp_6(-)
cmp_7 (icmp)
<mp_2(-)
Tmp_11(+)
tmp_10 (paztset) Goto Source
=1t (1cmp) Goto Verilog
se1_tmpd (icmp) Goto VHDL
se1_cmpé (1cmp)
se1_cmps (1)

<mp_s (1)
sel_tmpi_demozgan (1)
sel_tmp2 (select)

zev (%)

se1_tmp6 (1)

<mpl (5)

se1_tmp? (&)

prod 1_in(select)
prod 2 (select)

Performance!

| Properties | [€] C Source 58 =8|

File: D:\hls\fp_mul_pow2\fp_mul_pow?\fp_mul_pow2.c
142 }else .
143 #endif /| AESL_FP_MATH_NO_BOUNDS_TESTS not defined

w |

145 rod.si um.sign;
G pedbepoxmmbeen

147 prod mant = x_nurm mat

8 }

149 return prodfp_nurm;

150}

151 @

image17.png
) VHDL

Reduce Diskspace

Compiled Library Location

Input Arguments

Do not show this dialog box again.

image18.png
3((Open Wave Viewer,

‘double mul pow?2'

image19.png
Do not show this dislog bo agin.

o J o]

image20.png
v 1 zyboz7_workshop
1 his_project
v 1 repo
> 1 vivado-boards
> 1 vivado-library
1 vivado_project

image21.png
W = | Vivado

- o X
BT e e view)
= A 1 %APPDATA%\XilinX\Vivado\ v O] | search Vivado »

Name Date modified Type Size
3 Quick access
wDesktop 4 20164 11/08/20171337 File folder
1 strategies 11/08/20171337 File folder
s Downloads #
I tdapp 11/08/2017 1337 File folder
Documents £ [inttel 12/08/2017 1135 TCLFile
e Pictures A
& CAUsers\Anubis\AppData\Roaming\Xilinx\Vivadoinittc - Notepad++ - - o x

Elchangelog £ [inittcl B

File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ? X

JHHERGA 4 Wk e @2 | EE| AEpa® EE >

1

set_param board.repoPaths [list "c:/zyboz7_workshop/repo/vivado-boards/new"]|

image22.png
A\ Vivado 20164

Fle Fow Tods Wndow Heb

HLx Editions

VIVADO?

Quick Start

g

Tasks

ey

4" New Project

| Project Name

Enter a name for your project and spedify a directory where the project data

Project name: | video_pipeline

Project location: | C:/zyboz7_workshop/vivado_project

[] Create project subdrectory
Project will be created at: C:/zyboz7_workshop/vivado_project/video_pipeline

image23.png
4 New Project X
Project Type
Specify the type of project to create.

RTL Project

® You will be able to add sources, create block designs in IP Integrator, generate IP, run RTL analysis, synthesis, implementation, design
planning and analysis.

[4] Do not specify sources at this time

(O Post-synthesis Project: You will be able to add sources, view device resources, run design analysis, planning and implementation.
Do not spedify sources at this time
/O Planning Project
Do not specify design sources. You will be able to view part/package resources.

Imported Project
Create a Vivado project from a Synplify, XST or ISE Project File.

Example Project
Create a new Vivado project from a predefined template.

s (B me | o

image24.png
4" New Project X

Default Part
Choose a default Xilinx part or board for your project. This can be changed later.

Select: @ Parts |l Boards|

4 Fiter/ Preview
Vendor: diglentinc.com v
Display Name: | All Remaining -
BoardRey: | Latest -
Reset Al Filters
Search: |0]
Display Name Vendor BoardRev Part 1/OPinCount FieVerson |
@ Basys3 236 11 5"
B Cmod A7-15t diglentinc.com 8.0 @ xc7al5tpg236-1 23 11 2
| Cmod A7-35t digilentinc.com B.0 @ xc7a35tcpg236-1 236 11 5
1 Genesys2 digilentinc.com H @ xc7k325tffg900-2 900 11 4
1 Nexys4 diglentinc.com B.1 @ xc7a100tcsg324-1 324 11 1
 Nexys4 DDR diglentinc.com C.1 @ xc7a100tcsg324-1 324 11 1
[Nexys Video diglentinc.com A.0 @ xc7a200tsbg484-1 484 11 3
1
E

