
AAttllyyss BBSSBB SSuuppppoorrtt FFiilleess ffoorr

AAXXII--bbaasseedd EEDDKK 1133__22....1144__33 DDeessiiggnnss

Revision: October, 30th, 2012
1300 NE Henley Court, Suite 3

Pullman, WA 99163
(509) 334 6306 Voice | (509) 334 6300 Fax

 page 1 of 15
Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.

Overview

This package will integrate Base System Builder (BSB) support for the Atlys Spartan-6

FPGA Development Board into Xilinx EDK tools. It includes board definition files and Digilent

custom core support files for creating AXI-based MicroBlaze embedded designs in BSB.

With these files the BSB can be used to create Platform Studio projects initialized with

cores that are properly configured to control the on-board peripherals.

Contents:

1. Checklist for using the BSB Support Files
2. Creating a Base System using BSB Wizard
3. Making Connections for the Custom Cores
4. Using the Digilent HDMI controller

1. Checklist for using the BSB Support Files

 In order to use the peripherals fully supported by Xilinx BSB only, do the following steps:

1. Install the Digilent AXI IPCore Support Files. This can be done by running
..\Digilent_AXI_IPCore_Support_v_1_34\ inst_uninst.bat and following the on-screen
instructions.
Notes:

a. The current version of the Digilent AXI IPCore Support Files is 1_34. If you
previously installed an older version of the AXI IPCore support files for the
current version of EDK, it is recommended to uninstall those files first.

b. The Digilent AXI IPCore Support Files has to be installed only once per EDK
version and is valid for all of the Digilent boards.
Therefore, if using another Digilent board, for example, Nexys3, the Digilent AXI
IPCore Support Files do not need to be installed again for the current version of
EDK

2. Create the Base System using the Base System Builder Wizard. For details, see
chapter “Creating a Base System using BSB Wizard”

Note: The currently supported peripherals by Xilinx BSB are outlined in Table 1 below.

 Additionally, in order to use the peripherals supported by custom cores, in System
Assembly View do the following steps:

3. For each custom core, make the AXI clock connections. For details, see chapter
“Connecting AXI Clock Signals to the custom cores”.

4. For each custom core, connect its external ports. For details, see chapter “Making
external port connections for the custom cores”.

Atlys BSB Support Files for AXI-based EDK 13_2..14_3 Designs

www.digilentinc.com page 2 of 15
Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.

5. For custom cores having I/O signals, check and correct the I/O signal names in order to
match to the signal names in the .ucf file. For details, see chapter “Checking I/O signal
naming for the _pin suffix”.

6. Optionally, for each core having interrupt output signal, connect this signal to the
interrupt controller. For details, see chapters “Configuring and removing
peripherals”, then “Connecting internal and interrupt signals for custom cores”.

 Notes:

a) The current peripherals supported by custom cores are outlined in Table 2 below.
b) By default, the custom cores are selected in BSB Wizard. However, any core can be

removed in BSB Wizard, in the “Select and Configure Peripherals” window. For
details, see chapter “Configuring and removing peripherals”

After the steps above are completed, the bitstream can be generated and the project can

be exported to SDK.

TABLE 1. PERIPHERALS SUPPORTED BY XILINX CORES

Peripheral Supported Interface Core name(s) Notes

128MB DDR (cached) AXI4 axi_s6_ddrx --

8 User Switches AXI4-Lite axi_gpio --

5 User Push Buttons AXI4-Lite axi_gpio --

8 LED outputs AXI4-Lite axi_gpio --

UART AXI4-Lite
axi_uartlite/
axi_uart16550

--

16-MB Quad-SPI PCM AXI4-Lite axi_quad_spi

There is an alternative
custom core named “Quad-
SPI controller”. The core can
be find in EDK in the “Project
Peripheral Repository
0/Digilent” The core allows
changing the SPI mode
(single, dual, quad) in the
runtime

10/100/1000 Mbps
PHY

AXI4-Lite axi_ethernet
Requires license; exclusive to
axi_ethernetlite

10/100 Mbps PHY AXI4-Lite axi_ethernetlite Exclusive to axi_ethernet

TABLE 2. PERIPHERALS SUPPORTED BY CUSTOM CORES

Peripheral Supported Interface Core name(s) Notes

AC-97 AXI4-Lite d_ac97_axi Custom core

HDMI
AXI4-Lite, AXI4-
Stream

axi_hdmi

Custom core; Not
supported in BSB;
Supported only with
EDK v13.4 and above

USB-EPP AXI4-Lite d_usb_epp_dstm_axi Custom core

For additional information on using the cores above, please refer to their PDF datasheets

Atlys BSB Support Files for AXI-based EDK 13_2..14_3 Designs

www.digilentinc.com page 3 of 15
Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.

2. Creating a Base System using BSB Wizard

Note: For EDK versions older than 14.3, the screenshots below may differ. However, the
relevance of the data entered into the text boxes and combo boxes remains the same.

Start Xilinx Platform Studio and create a new project using Base System Builder by selecting
“Create New Project Using Base System Builder”. The “Create New XPS Project Using BSB
Wizard” will appear, as shown in Figure 1 below.
In this window:

1. Make sure that “AXI System” is selected

2. Click on the “Browse” button beside the “Project File” and select a folder where the
system.xmp project file will be located.

Notes:

a. It is NOT recommended to use a path which contains spaces, such as “My
Documents” for the project folder, because a folder like this might affect the
functionality of the EDK and SDK tools, from which many are linux-based.

b. It is recommended to use an empty folder. The whole EDK hardware project will
be stored in the same folder, therefore it is easier to archive and copy the whole
project. Later, if preferred, SDK can also be set to use as project workspace a
subfolder in the project root folder.

c. By default, the project description file is “system.xmp”. However, it can be given
any name if the file extension is kept and obviously, does not contain spaces.

3. Click on the “Browse” button beside the “Set Project Peripheral Repository Search Path”

box and browse to the path containing the .\lib subfolder from the BSB AXI Support Files
folder, select the .\lib subfolder and click OK.

Note: Obviously, the steps above can be made in any order until you don’t click the OK
button of the “Create New XPS Project Using BSB Wizard” window.

Figure 1. BSB window with specifying the project type, project location and the Peripheral

Repository Search Path

2

1

3

Atlys BSB Support Files for AXI-based EDK 13_2..14_3 Designs

www.digilentinc.com page 4 of 15
Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.

After you click OK, in the next window you should now be able to select the Digilent as

vendor and the Digilent Spartan-6 Atlys as your development board, see Figure 2.

Figure 2. Board and System Selection Window

Click “Next”. The following window is the “Processor, Cache and Peripheral Configuration”

window. In this one the peripherals can be selected, some of the peripherals can be configured
and unwanted peripherals can be removed.

Configuring and removing peripherals

 In order to remove a peripheral, simply click on the specific peripheral and then click
“Remove”, see Figure 3 for details:

Figure 3. Removing a Peripheral in BSB

1

2

Atlys BSB Support Files for AXI-based EDK 13_2..14_3 Designs

www.digilentinc.com page 5 of 15
Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.

Note: When a peripheral is selected, its parameters that can be configured in BSB, if any, are
shown. For example, Figure 4 shows the example to select the interrupt option for the Digilent
USB-EPP interface:

Figure 4. Selecting the interrupt option for the Digilent USB-EPP interface

Selecting the “Use Interrupt” option for any peripheral having this option will make BSB to

add an interrupt controller to the system. Therefore, if no other peripheral has this option, in order
to use interrupts with the Digilent USB-EPP interface, the steps above needs to be made.

However, because the Digilent USB-EPP interface is a custom core, its interrupt signal will
have to be manually connected to the interrupt controller. See chapter “Connecting internal and
interrupt signals” later in this document.

After the needed cores are selected and/or configured, click “Finish”. The Base System is

generated and Xilinx Platform Studio (XPS) will bring up the System Assembly View showing the
Bus Connections of the various peripherals.

3. Making Connections for the Custom Cores

Connecting AXI Clock Signals to the custom cores

1. In System Assembly View, select the “Ports” tab, see Figure 5 below:

Figure 5. Selecting the Ports View

2. If the “Net” column is not sown in the Ports view (by default, is shown in older EDK

versions), show it by right-clicking on the Ports View header and selecting “Net”, as
shown in the figure below:

1
2

Atlys BSB Support Files for AXI-based EDK 13_2..14_3 Designs

www.digilentinc.com page 6 of 15
Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.

Figure 6. Showing the Net column

 Drag the width of columns as appropriate in order to see the full signal names.

3. Expand “Digilent_Usb_Epp”, then “(BUS_IF) S_AXI”. In the Net column select for
S_AXI_ACLK the signal “clk_100_0000MHzPLL0”, as shown in the figure below:

Figure 7. Connecting the AXI clock signal for a custom core

 Note: The signal “clk_100_0000MHzPLL0” is both the processor clock and the AXI clock,
assuming that in the “Processor, Cache and Peripheral Configuration” window (its lower part is
shown in Figure 3) the clock frequency did not change from 100 MHz. Usually, the system clock
signal is named in the “clk_frequencyMHzPLLnumber”.

4. Repeat Step 3 above for “Digilent_AC97_Cntlr”, if this core is also present in the
system.

Making external port connections for the custom cores

1. For Digilent_Usb_Epp, select the signal group – IO Interface “(IO_IF) usb_epp_ext”

and, in the Connected Ports column, expand the combo box, then select “Make Ports
External”, as shown in the figure below. This will connect all of the core ports to
external FPGA ports.

1. Right-Click

2

Atlys BSB Support Files for AXI-based EDK 13_2..14_3 Designs

www.digilentinc.com page 7 of 15
Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.

Figure 8. Making an external connection

2. Repeat the step above for “Digilent_AC97_Cntlr”, group “(IO_IF) ac97_ext”, if this core

is also present in the system.

Note: Older versions of EDK might not have the “Connected Port” column available.
In this case expand the corresponding signal group and select all of the signals by holding
the CTRL or SHIFT keys down. Then right-click on the selection and choose “Make
External”, as in the figure below:

Figure 9. Making external connections in older versions of EDK

Checking I/O signal naming for the _pin suffix

When an I/O signal is made external, some versions of EDK add the “_pin” suffix to the

signal name. However, in the .ucf file generated by BSB the signal names might be without the
“_pin” suffix. Obviously, the external signal names will have to match in both files.

For the Atlys board, this case might happen for the DB signal of the Digilent_Usb_Epp

peripheral.

In order to check for I/O signal naming, do the following steps:
1. In Ports View, scroll up and expand “External Ports”. Check for the port named

“Digilent_Usb_Epp_DB” or “Digilent_Usb_Epp_DB_pin”, as shown in the figure below:

Atlys BSB Support Files for AXI-based EDK 13_2..14_3 Designs

www.digilentinc.com page 8 of 15
Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.

Figure 10. Viewing external port names

2. Select the “Project” tab then double-click on the “system.ucf” file, as shown in the figure

below. The .ucf file will open.

Figure 11. Opening the ucf file

3. Locate the “NET Digilent_Usb_Epp_DB[]” lines in the .ucf file, as shown in the figure
below. Note that the net names do not contain the “_pin” suffix.

Figure 12. Viewing ucf constraints

 In this case, either add the “_pin” suffix in the .ucf file after “_DB”, so, for example,
“Digilent_Usb_Epp_DB[0]” becomes “Digilent_Usb_Epp_DB_pin[0]”, or, rename the external port
to remove the _pin suffix in Port View. Noticeably, removing the “_pin” suffix in Port View is easier.
 Note: Selecting an external port name in Port View will automatically edit the port name.

1

2

Atlys BSB Support Files for AXI-based EDK 13_2..14_3 Designs

www.digilentinc.com page 9 of 15
Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.

Connecting internal and interrupt signals for custom cores

EPP requests for the Digilent USB-EPP interface come from the USB port. The EPP
protocol is time-out based Therefore If the processor does not answer in about 100 ms, the PC
application will signal a timeout. So, it is recommended that EPP requests to be handled with an
interrupt service routine instead of continuously polling the interface status.

The demo applications include examples for using the USB-EPP interface in both polling
and interrupt mode.

In order to use interrupt service routines, the interrupt request signal for the Digilent USB-
EPP has to be connected to either an interrupt controller or the Microblaze processor interrupt
input.

If the “Use Interrupt” option is selected for any core in BSB, then the Base System Builder
will add an interrupt controller to the system. Otherwise, the interrupt controller has to be manually
added and connected to the system.

In order to connect the interrupt output of a custom core to the interrupt controller:

1. Click on the System Assembly View and in Port View look for the microblaze_0_intc

core then expand it. In the Connected Ports column click on the INTR signal.
2. In the pop-up window in the left side select each interrupt signal that is desired to

be connected, then click the right arrow.
3. In the right side use the up and down arrows to set the interrupt priorities, if desired.

Figure 13. Adding interrupt signals to an interrupt controller and setting the interrupt

priorities

Note:

If the BSB wizard added the interrupt controller, its name, by default, will be
“microblaze_0_intc”.Howewer, if the interrupt controller is manually added later in
System Assembly View, then its name, by default, will be “axi_intc_0”.

If the interrupt controller is manually added to the system, then its Interrupt output will
have to be manually connected to the Microblaze processor.

This can be done in System Assembly View, click on the “Bus Interfaces” tab, expand
the Microblaze processor (by default “microblaze_0”) and make the connection to the
“Interrupt” port, as shown in the figure below:

1

2
3

2

Atlys BSB Support Files for AXI-based EDK 13_2..14_3 Designs

www.digilentinc.com page 10 of 15
Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.

Figure 14. Connecting manually the Interrupt signal from the interrupt controller to the

Microblaze processor

Note:
All of the connections presented in the chapters above can be made by editing the MHS
file. However, making connections in the System Assembly View, Port View is easier
and more error-proof.

Be careful when editing the MHS file. Improper connections can lead to bitstream
generation failures. Also, syntax errors might lead to EDK project corruption, i.e. the
situation that XPS closes the project and announces MHS errors, not being able to open
it until the errors are connected.

Therefore it is recommended to make a backup copy of the MHS file before editing it.

This can be done either by a File -> Save As… command or by making a backup copy
of the system.mhs file in a file explorer. The system.mhs file can be found in the root of
the directory where the project is located.

More information about the MHS file syntax can be fund in “Xilinx Platform Specification Manual”
UG642, chapter “Microprocessor Hardware Specification (MHS), on www.xilinx.com.

http://www.xilinx.com/

Atlys BSB Support Files for AXI-based EDK 13_2..14_3 Designs

www.digilentinc.com page 11 of 15
Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.

4. Using the Digilent HDMI controller

Note: This core is not included in BSB due to many connections and configurations that
have to be manually made. Also, this core is supported only in EDK versions 13.4 and
above.

In order to use the Digilent HDMI controller, first the AXI Video DMA core must be connected. In
order use the core, go through the following steps:

1. Add an “AXI Video DMA” core:
Click on the “IP Catalog”, expand the “DMA and Timer group”, select “AXI Video DMA”
core, right-click and select “Add IP”, as figure below shows:

Figure 15. Adding a core from the IP catalog

 The XPS Core Config window will appear.

2. In XPS Core Config window, in the “User” tab:
- Check the “Enable Asynchronous Clocks” (for older versions, “Primary Clock is
Asynchronous”) option, do not leave it to “Auto”

- For newer versions, expand the “MM2S Channel Options” group. Older versions will
have the parameters under “VDMA Options”.

- Set “Line Buffer Depth” (older versions: “MM2S Video Line Buffer Depth”) to
1024 Bytes
- Set “MM2S Video Line Buffer Threshold” (older versions: “MM2S Video Line
Buffer Almost Empty Threshold”) to 512 Bytes

- For newer versions, expand the “S2MM Channel Options” group. Older versions will
have the parameter under “VDMA Options”.

- Set “Line Buffer Depth” (older versions: “S2MM Video Line Buffer Depth”) to
1024 Bytes

Notes:
a. If the user does not need the HDMI receiver then the option “Enable Channel” from

the “S2MM Channel Options” can be unchecked. For older versions, the “Include

1

2

3

Atlys BSB Support Files for AXI-based EDK 13_2..14_3 Designs

www.digilentinc.com page 12 of 15
Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.

S2MM Channel” under “VDMA options” can be set to “FALSE”. Also the
parameter above regarding the S2MM channel does not have to be set.

b. If the user does not need the HDMI transmitter then the option “Enable Channel”
from the “MM2S Channel Options” can be unchecked. For older versions, the
“Include MM2S Channel” under “VDMA options” can be set to “FALSE”. Also the
parameters above regarding the MM2S channel do not have to be set.

3. In the same manner as at Step 1, from the “IP Catalog, Project Peripheral

Repository0/Digilent”, add an “AXI HDMI Receiver/Transmitter” core.
Notes:

a. If the user does not need the HDMI receiver then set the option “Use HDMI
Receiver Module” to FALSE.

b. If the user does not need the HDMI transmitter then set the option “Use HDMI
Transmitter Module” to FALSE.

4. Go to “System Assembly View”, Bus Interfaces View.

Interconnect the MM2S and S2MM buses between the axi_hdmi_0 and axi_vdma_0
cores in the way shown in the picture below:

Figure 16. Interconnecting the MM2S and S2MM buses between the HDMI transmitter and

the Video DMA
Note:

By default, the Video DMA instance name is set to “axi_vdma_0” and the HDMI
Receiver/Transmitter instance name to “axi_hdmi_0” and will be referred further. If
the user renames the instances, please refer to them using their new name.

5. Go to the Ports View. Expand the “axi_hdmi_0” instance.

- Click on the pen icon on the port “MM2S_FSYNC_IN” and select core
“axi_vdma_0”, signal “mm2s_fsync_out”, then click on the check icon to make the
connection.

- In a similar manner, connect port “MM2S_BUFFER_ALMOST_EMPTY” to signal
“mm2s_buffer_almost_empty” of “axi_vdma_0”.

- Also connect “S2MM_FSYNC_IN” to signal “s2mm_fsync_out” of “axi_vdma_0”,
see the figure below for details.

- Also connect port “ACLK” to “clk_100_0000MHzPLL0”
- Expand “(BUS_IF) S_AXIS_MM2S” and “(BUS_IF) M_AXIS_S2MM” bus

interfaces. Click on the combobox arrow in the “Net” column at the
“S_AXIS_MM2S_ACLK” signal and choose “New Connection”. Create also a new
connection for the “M_AXIS_S2MM_ACLK” signal, see the figure below.

6. Expand the “axi_vdma_0” instance.
 Using the combobox arrow, connect “m_axis_mm2s_aclk” to
“axi_hdmi_0_S_AXIS_MM2S_ACLK” and “s_axis_s2mm_aclk” to
“axi_hdmi_0_M_AXIS_S2MM_ACLK” (to the new connections created at step 5),
see the figure below:

Atlys BSB Support Files for AXI-based EDK 13_2..14_3 Designs

www.digilentinc.com page 13 of 15
Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.

Figure 17. Additional signalconnections on the Digilent HDMI Controller and the Video DMA

Note:
Older versions of EDK might not allow new connections in the System Assembly
View. In this case the new connections i.e. step 5, last line and step 6 will have to
be made using the MHS file, as shown below:

- From the “Project” tab open “system.mhs” and locate the line “BEGIN axi_hdmi”.

Before the “END” statement, add the following lines:
PORT S_AXIS_MM2S_ACLK = S_AXIS_MM2S_ACLK_int

PORT M_AXIS_S2MM_ACLK = M_AXIS_S2MM_ACLK_int, as shown in the

figure below:

Figure 18. Making new connections for the Digilent HDMI Controller in the MHS file

Atlys BSB Support Files for AXI-based EDK 13_2..14_3 Designs

www.digilentinc.com page 14 of 15
Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.

- Look for the line “BEGIN axi_vdma” and add the following lines:
PORT m_axis_mm2s_aclk = S_AXIS_MM2S_ACLK_int
PORT s_axis_s2mm_aclk = M_AXIS_S2MM_ACLK_int, as shown in the figure
below:

=
Figure 19. Making the new connections created above for the Video DMA in the MHS file

7. Go to the System Assembly View -> Adresses tab. In older versions of EDK it might

happen that adresses for the axi_hdmi_0 core were not automatically generated.

If there is an “Unmapped Addresses group, then click on the “Regenerate Addresses”
icon, as shown in the figure below, in order to generate adresses for the axi_hdmi core,
see the figure below.
After regenerating addresses, the “Unmapped Addresses” group should not be shown
anymore

Figure 20. Regenerate address space for the axi_hdmi core

8. From the “Project” tab open “system.ucf”. From the downloaded AXI Board Support

Files, from the path
../Atlys_AXI_BSB_Support/lib/Digilent/boards/Digilent_Atlys/data” folder open the
Digilent_HDMI_axi_hdmi_v1_00_a.ucf file, using a text editor. Also XPS can be used
to open the specific file. After the file is opened, copy its contents to the end of the
system.ucf file, see the figure below.
Don’t forget to add an extra line to the last .ucf line.

Atlys BSB Support Files for AXI-based EDK 13_2..14_3 Designs

www.digilentinc.com page 15 of 15
Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.

Figure 21. Adding the ucf constraints to the system.ucf. file

9. Obviously, save the .ucf file. Now you can start generating the bitstream for the project.

	Overview
	Contents:
	1. Checklist for using the BSB Support Files
	2. Creating a Base System using BSB Wizard
	Configuring and removing peripherals

	3. Making Connections for the Custom Cores
	Connecting AXI Clock Signals to the custom cores
	Making external port connections for the custom cores
	Checking I/O signal naming for the _pin suffix
	Connecting internal and interrupt signals for custom cores

	4. Using the Digilent HDMI controller

