

1300 Henley Court
Pullman, WA 99163

509.334.6306
www.store.digilent.com

Unit 7: Audio Signal Processing

Revised March 13, 2017
This manual applies to Unit 7.

Unit 7 Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 1 of 14

1 Introduction

This unit focuses on processing signals in the audio frequency range using digital signal processing (DSP) concepts

with the PIC32MX370 microprocessor. Lab 7a investigates a method of generating multiple frequency signals

without using transcendental functions or lookup tables. Lab 7b uses Discrete Fourier Transforms (DFT) to detect

the presence of signals. It is not the purpose of this unit to teach the theory of digital filtering, but rather to teach

how to implement digital filtering using a conventional microprocessor in lieu of specialized digital signal

processors.

2 Objectives

1. Extend the applications of digital signal processing introduced in Unit 6.

2. Use a DSP algorithm to synthesize sine waves.

3. Use a DSP algorithm to analyze a periodic signal using Discrete Fourier Transforms.

4. How to implement DSP algorithms on the PIC32 processor using C.

5. How to use the PIC32 MIPS DSP library to increase the DSP algorithm execution speed.

3 Basic Knowledge

1. Knowledge of C or C++ programming

2. Working knowledge of MPLAB® X IDE

3. Interfacing with an LCD

4. Understanding of Finite Impulse Response Digital Filters

5. Understanding of Fourier Transforms

4 Equipment List

4.1 Hardware

1. Basys MX3 trainer board

2. 2 Standard USB A to micro-B cables

3. Workstation computer running Windows 10 or higher, MAC OS, or Linux

https://en.wikipedia.org/wiki/Digital_signal_processing
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Digital_signal_processor
https://en.wikipedia.org/wiki/Digital_signal_processor
http://en.wikibooks.org/wiki/C_Programming/Compiling
http://ww1.microchip.com/downloads/en/DeviceDoc/52027B.pdf
http://en.wikipedia.org/wiki/Finite_impulse_response
https://en.wikipedia.org/wiki/Fast_Fourier_transform
http://store.digilentinc.com/basys-mx3-pic32mx-trainer-board-recommended-for-embedded-systems-courses/
http://store.digilentinc.com/usb-a-to-micro-b-cable/

Lab 7: Audio Signal Processing

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 2 of 14

In addition, we suggest the following instruments:

4. Digilent Analog Discovery 2

4.2 Software

1. Microchip MPLAB X® v3.35 or higher

2. PLIB Peripheral Library

3. XC32 Cross Compiler

4. Waveforms 2015 (if using the Analog Discovery 2)

5. Iowa Hills Software for IIR and FIR Filters (used for illustrative purposes and is not required)

5 Project Takeaways

1. How to implement digital filters in C using a PIC32 microprocessor.

2. How to create analog output using pulse-width modulation.

3. How to sample an analog input at a specified rate.

4. How to use the PIC32 processor to make a signal generator.

5. How to use the PIC32 processor to make a real-time frequency spectrum analyzer.

6 Fundamental Concepts

6.1 Signal Processing

As introduced in Unit 6, signal processing is an enabling technology that encompasses the fundamental theory,

applications, algorithms, and implementations of processing and transferring information. This information is

contained in many different physical, symbolic, or abstract formats broadly designated as signals. In this unit, we

will employ both analog and digital signal processing. Analog signal processing will be used to implement

frequency filters for both microprocessor inputs and outputs. The analog filters are electronic circuits operating

on continuous-time analog signals. Digital filters use computers and microprocessors to perform mathematical

operations on sampled, discrete-time signals to reduce or enhance certain aspects of that signal. We looked at

how both analog and digital filters are used in open and closed-loop digital control in Labs 6a and 6b. It became

apparent that the timing for sampling the inputs and generating the output must occur at fixed intervals.

6.2 Analog Signal Processing

Analog signal processing is any type of signal processing conducted on continuous analog signals by some analog

means. This usually involves electronic circuits consisting of resistors, capacitors, inductors, and high gain

differential amplifiers. The term “analog” refers to signals or information that is continuously variable.

Mathematically, this implies that the signal can be differentiated an infinite number of times.

Electronic analog computers are able to process analog signals using electronic operational amplifiers to

implement the basic mathematical operations such as add, subtract, multiply, and divide transcendental functions

such a logarithms and exponentials, as well as integral and differential calculus. Programming analog computers is

tantamount to wiring electronic circuits, making them difficult to construct and modify. Although analog

computers have been replaced by microprocessors, they are frequently used to implement electronic filters for

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,842,1018&Prod=ANALOG-DISCOVERY
http://www.microchip.com/mplab/mplab-x-ide
http://www.microchip.com/SWLibraryWeb/product.aspx?product=PIC32%20Peripheral%20Library
http://www.microchip.com/xcdemo/xcpluspromo.aspx
http://store.digilentinc.com/waveforms-2015-download-only/
http://iowahills.com/
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Filter_(signal_processing)
https://en.wikipedia.org/wiki/Analog_filter
https://en.wikipedia.org/wiki/Electronic_circuit
https://en.wikipedia.org/wiki/Continuous-time
https://en.wikipedia.org/wiki/Analog_signal
https://en.wikipedia.org/wiki/Digital_filter
https://en.wikipedia.org/wiki/Sampling_(signal_processing)
https://en.wikipedia.org/wiki/Discrete-time_signal
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Analog_signal
https://en.wikipedia.org/wiki/Differential_amplifier
https://en.wikipedia.org/wiki/Analog_computer
https://en.wikipedia.org/wiki/Operational_amplifier
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Differential_calculus
https://en.wikipedia.org/wiki/Calculus
https://en.wikipedia.org/wiki/Electronic_filter

Lab 7: Audio Signal Processing

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 3 of 14

signal conditioning of digital computer inputs and outputs. Analog filters have the advantage of being able to

operate at higher power levels and frequencies.

6.3 Digital Signal Processing

Digital signal processing (DSP) is the use of digital computers to implement digital processing to perform a wide

variety of signal processing operations. The signals processed in this manner are a sequence of numbers that

represent samples of a continuous variable in a domain such as time, space, or frequency.

Digital computers, particularly in the form of microprocessors, have replaced the computing effort that was

formerly allocated to many analog computers. Digital computers cannot directly process analog input signals

without first converting the signal into representations of the signal as discretely varying levels using an analog-to-

digital converter (ADC). Digital computers can generate discretely varying output using a digital-to-analog

converter (DAC), but to get truly continuous output, the DAC output must be further filtered using an analog filter.

The following discussions provide an outline of the process of designing digital filters. The reader who is interested

in an extensive discussion of the field of digital signal processing is directed to Reference 6 that is a PDF book by

Steven Smith.

6.3.1 Digital Filters

A digital filter is a system that performs mathematical operations on a sampled, discrete-time signal to reduce or

enhance certain aspects of that signal. Unit 6, along with Lab 6b, introduces DSP as applies to digital control. In

Unit 7, we will apply digital filters to generate and analyze analog signals as modeled in the block diagram in Fig.

6.1.

Figure 6.1. Block diagram of a digital filter implemented using a microprocessor.

The DSP algorithm repeatedly processes inputs and generates new outputs at a constant rate. This requires

sampling and converting the filtered analog input signal at this same rate or a multiple of it. Although the

maximum rate that the final DAC analog output can be generated at is the processing rate, outputs can be delayed

or generated at lower rates. Unless specifically required, most digital filtering systems sample inputs, process data,

and generate output at the same rate. Any variation of the processing rate results in generating incorrect outputs.

Many digital filters are based on design processes utilizing parameters that specify frequency responses in the

continuous domain, as expressed with rational polynomials as a function of the Laplace operator “s”. The general

form of this polynomial is shown in Eq. 6.1. The study of digital filtering covers the methodologies for determining

the specific values for the filter constants bj and ai based on the filter criteria.

𝑌(𝑠)

𝑋(𝑠)
= 𝐻(𝑠) =

∑ 𝑏𝑗∙𝑠𝑗𝑀−1
𝑗=0

∑ 𝑎𝑖∙𝑠𝑖𝑁−1
𝑖=0

 Eq. 6.1

Where Y(s) is the system output and X(s) is the system input.

https://en.wikipedia.org/wiki/Signal_conditioning
https://en.wikipedia.org/wiki/Digital_processing
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Sampling_(signal_processing)
https://en.wikipedia.org/wiki/Continuous_variable
https://en.wikipedia.org/wiki/Analog-to-digital_converter
https://en.wikipedia.org/wiki/Analog-to-digital_converter
https://en.wikipedia.org/wiki/Digital-to-analog_converter
https://en.wikipedia.org/wiki/Digital-to-analog_converter
https://en.wikipedia.org/wiki/Digital_filter
https://en.wikipedia.org/wiki/Sampling_(signal_processing)
https://en.wikipedia.org/wiki/Discrete-time_signal
https://en.wikipedia.org/wiki/Signal_(electrical_engineering)

Lab 7: Audio Signal Processing

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 4 of 14

Once the transfer function has been determined that meets the required filter frequency response, the continuous

domain transfer function must be approximated by a digital domain transfer function that digital computers can

implement as algorithms using programming code. One of the popular approximations is called the bilinear

transformation and is expressed by Eq. 6.2.

𝑠 =
2

𝑇𝑠

1−𝑧−1

1+𝑧−1 Eq. 6.2

Where Ts is the sampling period.

The result of the substitution of Eq. 6.2 into Eq. 6.1 is also a rational polynomial, as shown in Eq. 6.3, that relates

the output, Y(z), to the input, X(z). The polynomial coefficients dj and ci are not the same values as bj and ai used in

Eq. 6.1.

𝐻(𝑧) =
𝑦(𝑧)

𝑋(𝑧)
=

𝐹𝐼𝐿𝑇𝐸𝑅𝐺𝐴𝐼𝑁∙∑ 𝑑𝑗∙𝑧−𝑗𝑀−1
𝑗−0

1+∑ 𝑐𝑖∙𝑧−𝑖𝑁−1
𝑖=1

=
𝐹𝐼𝐿𝑇𝐸𝑅𝐺𝐴𝐼𝑁∙∑ 𝑑𝑗∙𝑋(𝑧)𝑀−1

𝑗=0 ∙𝑧−𝑗

1+∑ 𝑐𝑖∙𝑌(𝑧)∙𝑧−𝑖𝑁−1
𝑖=1

 Eq. 6.3

Solving Eq. 6.3 for the output, Y(z), as a function of the input, X(z), results in Eq. 6.4

𝑌(𝑧) ∙ [1 + ∑ 𝑐𝑖 ∙ 𝑧−𝑖] = 𝐹𝐼𝐿𝑇𝐸𝑅𝐺𝐴𝐼𝑁 ∙ 𝑋(𝑧) ∙ [∑ 𝑑𝑗 ∙ 𝑧−𝑗] 𝑀−1
𝑗=0 𝑁−1

𝑖=1 Eq. 6.4

Using the relationship that the inverse z operator is a delay of one sample, X(z)· z-i becomes x(n-i). Hence, Eq. 6.5 is

the inverse z transform of Eq. 6.3.

𝑦(𝑛) + ∑ 𝑐𝑖 ∙ 𝑦(𝑛 − 𝑖) = 𝐹𝐼𝐿𝑇𝐸𝑅𝐺𝐴𝐼𝑁 ∙ ∑ 𝑑𝑗 ∙ 𝑥(𝑛 − 𝑗) 𝑀−1
𝑗=0 𝑁−1

𝑖=1 Eq. 6.5

Here the nth term is the present input or most recent sample. The (n-i)th and (n-j)th terms are past outputs and

inputs, respectively. Eq. 6.6 represents an equation that can be solved on a computer. This form of a digital filter is

called an infinite impulse response filter because it involves past outputs in the computation. Listing A.3 in

Appendix A is a C function that can implement a fourth order IIR filter.

𝑦(𝑛) = 𝐹𝐼𝐿𝑇𝐸𝑅𝐺𝐴𝐼𝑁 ∙ [𝑏0 ∙ 𝑥(𝑛) + 𝑏1 ∙ 𝑥(𝑛 − 1) + 𝑏2 ∙ 𝑥(𝑛 − 2) + 𝑏3 ∙ 𝑥(𝑛 − 2)] − [𝑎1 ∙ 𝑦(𝑛 − 1) +
𝑎2 ∙ 𝑦(𝑛 − 2) + 𝑎3 ∙ 𝑦(𝑛 − 3) + 𝑎4 ∙ 𝑦(𝑛 − 4)] Eq. 6.6

As will be shown below, the implementation of a digital filter is not complicated. The real science of designing

digital filters lies in the selection of the design parameters that eventually produce the polynomial coefficients bj

and ai. While Reference 6 and 7 provide the theoretical basis for digital filter design, much of the technical

background can be minimized by using filter design software programs such as the one provided by Reference 8.

6.3.1 FIR C Program

Finite impulse response (FIR) filters are a class of digital filters that only use present and past inputs. FIR filters can

be expressed by Eq. 6.5 where all ci coefficients are zero, thus resulting in Eq. 6.7. FIR filters have a finite response

to any input.

𝑦(𝑛) = 𝐹𝐼𝐿𝑇𝐸𝑅𝐺𝐴𝐼𝑁 ∙ ∑ 𝑑𝑗 ∙ 𝑥(𝑛 − 𝑗)𝑀−1
𝑗=0 Eq. 6.7

Since FIR filters do not use any feedback, any rounding errors are not compounded by summed iterations, resulting

in the same relative error in each consecutive calculation. FIR filters are inherently stable since the output is the

sum of a finite number of finite multiples of the input values. Therefore, the output can be no greater than times

the largest value appearing in the input. FIR filters can be designed to have linear phase by making the coefficient

sequence symmetric. This property is sometimes desired for phase-sensitive applications, e.g. data

communications, seismology, and crossover filters.

https://en.wikipedia.org/wiki/BIBO_stability
https://en.wikipedia.org/wiki/Linear_phase
https://en.wikipedia.org/wiki/Seismology
https://en.wikipedia.org/wiki/Audio_crossover

Lab 7: Audio Signal Processing

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 5 of 14

The main disadvantage of FIR filters is that considerably more computation power in a general purpose processor

is required compared to an IIR filter with similar sharpness or selectivity, especially when low frequency (relative to

the sample rate) cutoffs are required. However, many digital signal processors provide specialized hardware

features to make FIR filters approximately as efficient as IIR for many applications.

Figure 6.2 is a screenshot of a FIR design for a low-pass filter with 2.0 kHz and 3db cutoff frequency. This was done

using Iowa Hills Filter Design Software. A few comments are in order to explain the process of entering the filter

specifications into the Iowa Hills filter designer. The entry box labeled OmegaC is the place where the filter 3db

cutoff frequency is set. The filter specification for this example of a 16 tap FIR filter has a cutoff frequency of 2 kHz

and a sampling frequency of 16 kHz. The normalized cutoff radian frequency, ωc, must first be converted to a ratio

of the cutoff frequency, Fc, to the sampling frequency, Fs, as shown in Eq. 6.8. Eq. 6.9 pre-warps the cutoff

frequency to compensate for frequency distortion generated by the bilinear transformation. Hence, the entry for

OmegaC shown in Fig. 6.2 uses a cutoff frequency of 2111 Hz for the analog filter design algorithm so that the

resulting digital filter will have a cutoff frequency of 2000 Hz.1 The coefficients shown on the right side of Fig. 6.2

are for a 16 tap FIR filter using the raised cosine prototype. Applying window functions reduces the main lobe roll-

off rate but has the benefit of reducing the amplitude of the first side lobe.

𝜔𝑐 = 2𝜋𝐹𝑐𝐹𝑠 Eq. 6.8

𝑂𝑚𝑒𝑔𝑎𝐶 = 2𝜋 ∙ tan (
𝜔𝑐

2
) Eq. 6.9

Figure 6.2. 16 Tap FIR Filter response and design coefficients.

1 Leland B. Jackson, Digital Filtering and Signal Processing, 3rd Ed. Kluwer Academic Publishers, ISBN 0-7923-9559-X,
1995, pg. 266-268

https://en.wikipedia.org/wiki/Selectivity_(electronic)
https://en.wikipedia.org/wiki/Raised-cosine_filter

Lab 7: Audio Signal Processing

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 6 of 14

Listing A.2 is the C code for the FIR digital filter using Q1.15 fixed point math. The Q1.15 fixed math scaled filter

coefficients are generated by multiplying the coefficients listed on the right-hand window of Fig. 6.2 by 215. The

code shown for fir_C_filter initially saves past inputs before implementing the algorithm using Eq. 6.7. Listing A.1

shows the code to implement the FIR filter using the MIPS DSP library function. The function setup_fir_filter is

called during initialization while the function fir_MIPS_filter is called each time a new input data sample is

processed. The fir_MIPS_filter function executes the FIR filter almost 7 times faster than the fir_C_filter function.

6.3.2 IIR C Program

Infinite impulse response (IIR) filters, or recursive filters, are a class of digital filters that only use present and past

inputs and past outputs. Mathematically, the IIR filter algorithm is expressed by Eq. 6.4. They are called infinite

impulse response because, in theory, an input - even an impulse - has infinite influence on the filter output.

The main advantage digital IIR filters have over FIR filters is their efficiency of design specifications in terms of filter

prototype, bandwidth, cutoff frequency, ripple, and/or roll-off. Such a set of specifications can be met with a lower

order IIR filter than would be required for an FIR filter meeting the same requirements. When implemented in a

signal processor, this implies a correspondingly fewer number of calculations per time step. The computational

savings is often a rather large factor.

IIR filters with linear phase (constant group delay vs frequency) are difficult to design. Digital IIR filters are

susceptible to limit cycle behavior when idle, due to the feedback system in conjunction with quantization.

Coefficient quantization can also result in an unstable filter.

Figure 6.3 is a screenshot of an IIR design for a low pass filter with 2.0 kHz and 3db cutoff. The same consideration

for the parameter OmegaC discussed in section 6.3.1 above apply here as well. The coefficients on the right are for

different implementation algorithms. The Nth order coefficients are used for implementing the algorithm shown in

Eq. 6.5 and Eq. 6.6. Note that the magnitudes of the denominator coefficients are greater than unity, hence there

will be an overflow if we attempt to use the Q1.15 format. However, if both the numerator and denominator

coefficients are divided by two after the Q1.15 scaling, all coefficients will be less than unity and the filter will

retain the desired characteristics. Halving the filter coefficients after Q1.15 scaling is the same as scaling by Q2.14.

The C code for the IIR filter using these coefficients is shown in Listing A.4.

https://en.wikipedia.org/wiki/Q_(number_format)
https://en.wikipedia.org/wiki/Linear_phase
https://en.wikipedia.org/wiki/Group_delay
https://en.wikipedia.org/wiki/Limit_cycle

Lab 7: Audio Signal Processing

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 7 of 14

Figure 6.3. 4th order IIR Butterworth filter response and design coefficients

The second set of coefficients shown in Fig. 6.3 is used for a biquadratic implementation of an IIR filter. Each stage

can be modeled as shown in Fig. 6.4. Multistage biquadratic filters are cascaded together to implement filters of

order greater than two. As noted from Fig. 6.3, the denominator has coefficients with magnitudes greater than

unity, hence we will use Q2.14 format. A fourth order IIR filter requires two second order biquadratic IIR filters.

Listing A.3 is an example of using the MIPS library functions for implementing a IIR filter. The function,

setup_iir_filter, is called in the system initialization. The function iir_filter is called to process each new data

sample.

Figure 6.4. Flow diagram of a single stage bi-quadratic IIR digital filter.

Figure 6.5 is a diagram of a single stage biquadratic IIR filter used by the MIPS DSP library. This unconventional

model shows that there is no implementation of the B0 or A0 terms. Section 2.1.1.1 of the application note cited by

https://en.wikipedia.org/wiki/Digital_biquad_filter

Lab 7: Audio Signal Processing

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 8 of 14

Reference 10 explains how to convert the biquadratic coefficients shown in Fig. 6.4 to the coefficients shown in

Fig. 6.5. The conversion is outlined by Eq. 6.10 through 6.12.

𝐴𝑖,𝑗 = −𝑎𝑖,𝑗 ∙ 213, 𝑖 𝑎𝑛𝑑 𝑗 = 1,2 Eq. 6.10

𝐵𝑖 = (
𝑏𝑖,𝑗

𝑏0,𝑗
) ∙ 213, 𝑖 𝑎𝑛𝑑 𝑗 = 1,2 Eq. 6.11

𝑠𝑐𝑎𝑙𝑒 = √max(𝑙𝑜𝑔2(𝑏10 ∙ 𝑏20)) Eq. 6.12

Since the scale factor is always less than or equal to 2 raised the product of b10 and b20, the gain of the filter will be

less than or equal to unity. The code shown in Listing A.3 shows that the compensating gain for the example IIR

filter is 2.51. Performance tests show that the IIR filter implemented using the MIP DSP library function is almost

15 times faster than using only C statements.

Figure 6.5. Flow diagram of a single stage MIPS IIR Biquadratic filter.

Figure 6.6 plots the response of the four filter algorithms for Listing A.1 through A.4. Only three plots are

distinguishable because the results of the input X and the IIR1 corresponding to Listing A.1, as well as the FIR filter

result for FIR1 are nearly identical.

Figure 6.6. Plot of outputs of the four example filters to a 1 kHz input sine wave.

Lab 7: Audio Signal Processing

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 9 of 14

7 Lab Exercises

As modeled in Fig. 7.1, the blocks shaded blue represent analog circuits and components. The blocks shaded green

represent the hardware resources within the microprocessor itself. The electromechanical transducers are the

speaker in Fig. 7.1 and the microphone in Fig. 7.2.

Figure 7.1 is the block diagram for Lab 7a that implements a sine wave generator using an IIR filter. The frequency

of the synthesized sine wave is selected by setting one of the eight slide switches on the Basys MX3 board high.

The frequencies synthesized range from 500 to 7500 Hz in steps of 1000 Hz. Refer to Lab 7a for details concerning

the algorithms to synthesize a sine wave and project specifications. The Basys MX3 board LCD will display the

selected frequency and the on-board amplifier-speaker circuit shown in Fig. B.1 of Appendix B.

Figure 7.1. Block diagram of a digital signal generator (Lab 7a).

Figure 7.2 is the block diagram for Lab 7b that implements a frequency spectrum analyzer using discrete Fourier

transforms (DFT) implemented by an FIR type algorithm. One DFT algorithm will be programmed using

conventional C statements while a second DFT algorithm will use a MIPS DSP library function. The Basys MX3

board LCD will input the audio signal using the Basys MX3 microphone circuit, shown in Fig. B.2, and will display

the frequency spectrum on the on-board LCD.

Figure 7.2. Block diagram of a digital spectrum analyzer (Lab 7b).

8 References

1. Basys MX3 Trainer Board Reference Manual

2. C Programming Reference

http://www.w3schools.in/c-programming-language/intro/

Lab 7: Audio Signal Processing

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 10 of 14

3. PIC32 Family Reference Manual, Timers Section 14:

http://ww1.microchip.com/downloads/en/DeviceDoc/61105E.pdf

4. PIC32 10 Bit ADC User’s Manual

5. PIC32 ADC Example Code

6. Steven W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing,

http://www.dspguide.com/pdfbook.htm

7. “Design of Digital Filters”, https://web.eecs.umich.edu/~fessler/course/451/l/pdf/c8.pdf

8. Iowa Hills Software Digital and Analog Filters, http://iowahills.com/

9. “A Discrete Fourier Transform Based Digital DTMF Detection Algorithm”,

http://www.rootsecure.net/content/downloads/pdf/paper_dtmf.pdf

10. Application Report SPRA867, “Parametric Equalization on TMS320C6000 DSP”,

http://www.ti.com/lit/an/spra867/spra867.pdf

http://ww1.microchip.com/downloads/en/DeviceDoc/61105E.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/61104E.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/PIC32_ADC_CodeExample_091213.zip
http://www.dspguide.com/pdfbook.htm
https://web.eecs.umich.edu/~fessler/course/451/l/pdf/c8.pdf
http://iowahills.com/
http://www.rootsecure.net/content/downloads/pdf/paper_dtmf.pdf
http://www.ti.com/lit/an/spra867/spra867.pdf

Lab 7: Audio Signal Processing

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 11 of 14

Appendix A: Filter C Code

Listing A.1. C Code to Implement a 16 tap FIR Digital Filter Using MIPS FIR Function

#define K 16
int16_t delayline[K] = {0};
int16_t coeffs2x[2*K] = {0};

void setup_fir_filter(void)
{
int i;
 for (i = 0; i < K; i++)
 delayline[i] = 0;
// lowpass2KHzFIRCoefs declared in Listing 3
 mips_fir16_setup(coeffs2x, lowpass2KHzFIRCoefs, K);

}

int16_t fir_MIPS_filter(int16_t indata)
{
int i;
int15_t outdata;

 mips_fir16(&outdata, &indata, coeffs2x, delayline, 1, K, 0);

 return outdata;
}

Listing A.2. C Code to Implement a 16 tap FIR Digital Filter Using Fixed Point Math

int16_t lowpass2KHzFIRCoefs[16]=
{
 (int16_t) (0.022642707844628567 * Q15),
 (int16_t) (-0.011786057779962828 * Q15),
 (int16_t) (-0.050116510848049953 * Q15),
 (int16_t) (-0.057537731307973683 * Q15),
 (int16_t) (-0.008530151801383020 * Q15),
 (int16_t) (0.092467681565975166 * Q15),
 (int16_t) (0.207569427201626133 * Q15),
 (int16_t) (0.283948226483300703 * Q15),
 (int16_t) (0.283948226483300703 * Q15),
 (int16_t) (0.207569427201626133 * Q15),
 (int16_t) (0.092467681565975166 * Q15),
 (int16_t) (-0.008530151801383020 * Q15),
 (int16_t) (-0.057537731307973683 * Q15),
 (int16_t) (-0.050116510848049953 * Q15),
 (int16_t) (-0.011786057779962828 * Q15),
 (int16_t) (0.022642707844628567 * Q15)
};

int fir_C_filter(int indata)
{
#define FIR_ORDER 16 // Filter order
/*
 Fixed point math uses Q1.15 format to scale coefficients

Lab 7: Audio Signal Processing

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 12 of 14

*/
static int x[FIR_ORDER] = {0}; // Input memory array initialized to zero
static int y[FIR_ORDER] = {0}; // Output memory array initialized to zero
int i,j;
 for(j = FIR_ORDER; j > 0; j--) // Time shift past inputs and outputs
 {
 x[j] = x[j-1];
 y[j] = y[j-1];
 }
 x[0] = indata;
 y[0] = (x[0] * lowpass2KHzFIRCoefs[0]);
 for(j = 1; j < FIR_ORDER; j++)
 {
 y[0] += (x[j] * lowpass2KHzFIRCoefs[j]);
 }
 y[0] /= Q15; // Normalize the result
 return y[0];
}

Listing A.3. C Code to Implement a Fourth Order IIR Digital Filter Using MIPS IIR

Function

#define B 2

biquad16 bq[B];
int16_t coeffs[4*B];
int16_t delayline[2*B];

void setup_iir_filter (void)
{
int i;
//initialize delayline iir filter with zero
 for (i = 0; i < 2*B; i++)
 delayline[i] = 0;

 bq [0].a1 = 6590; //a(1,1)/2
 bq [0].a2 = -1556; //a(1,2)/2
 bq [0].b1 = 2048; //b(1,1)/2
 bq [0].b2 = 1024; //b(1,2)/2

 bq [1].a1 = 8640; //a(2,1)/2
 bq [1].a2 = -4588; //a(2,2)/2
 bq [1].b1 = 2048; //b(2,1)/2
 bq [1].b2 = 1024; //b(2,2)/2

 mips_iir16_setup(coeffs, bq, B);
}

int16_t iir_filter (int16_t indata)
{
int i;
int16_t outdata;
int gain = 2.51;

//calculate iir filter biquad

Lab 7: Audio Signal Processing

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 13 of 14

 outdata = mips_iir16(indata, coeffs, delayline, B, 1);
 return outdata * gain;
}

Listing A.4. C Code to Implement a Fourth Order IIR Digital Filter Using Fixed Point

Math

int iir_filter(void)
{
#define IIR_ORDER 4 // Filter order
/*

Constants b0 – b3 and a1 – a3 as well as FILTERGAIN are defined as Q1.13 scaled

signed integer 16 data types.

*/
#define Q14 1<<14 // Scale factor
static int x[IIR_ORDER] = {0}; // Past input memory array initialized to zero
static int y[IIR_ORDER] = {0}; // Past output memory array initialized to zero
int i;

// propagate past inputs and outputs
 for(i = ORDER; i > 0; i--)
 {
 x[i] = x[i-1];
 y[i] = y[i-1];
 }
 x[0] = sample; // Save the newest input value
 y[0] = x[0] * b0; // Compute the first numerator term

// Compute the remaining filter terms
 for(i = 1; i < ORDER; i++)
 {

 y[0] += ((x[i] * b[i]) * FILTER_GAIN) - (y[i] * a[i]);
 }
 y[0] /= Q14; // Normalize the result
 return (y[0]); // Return the filter output */
}

Lab 7: Audio Signal Processing

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 14 of 14

Appendix B: Audio Amplifiers

Figure B.1. Basys MX3 Trainer Board Audio Output Schematic Diagram.

Figure B.2. Basys MX3 Microphone Schematic.

