

1300 Henley Court
Pullman, WA 99163

509.334.6306
www.store.digilentinc.com

Unit 6: Analog I/O and Process Control

Revised March 13, 2017
This manual applies to Unit 6.

Unit 6 Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 1 of 19

1 Introduction

The purpose of this laboratory exercise is to investigate applications of embedded controllers to real time control

algorithms that employ analog inputs and analog outputs. You will use a computer algorithm to implement a

closed-loop process for motor speed control. You will see how feedback can be used to linearize an inherently

nonlinear process and result in zero steady state control error.

2 Objectives

1. Generate PWM outputs to implement variable motor supply voltage.

2. Implement a tachometer operation using PIC32 Timers.

3. Develop MPLAB X projects that implement open-loop and closed-loop motor control.

4. Develop the C program code to implement a PI controller and a moving average digital filter.

5. Manage multiple background tasks in an interrupt driven system.

6. To monitor and display data from a process running in real-time.

3 Basic Knowledge

1. Suggested reading: Embedded Computing and Mechatronics with the PIC32 Microcontroller

a. Basic circuit theory

b. Fundamentals of programming with C

2. How to configure I/O pins on a Microchip® PIC32 PPS microprocessor

3. How to implement a real-time system using preemptive foreground – background task control

4. How to generate a PWM output with the PIC32 processor

5. How to configure the Analog Discovery to display logic traces

6. How to implement the design process for embedded processor based systems

4 Equipment List

4.1 Hardware

1. Basys MX3 trainer board

2. Workstation computer running Windows 10 or higher, MAC OS, or Linux

https://www.elsevier.com/books/embedded-computing-and-mechatronics-with-the-pic32-microcontroller/lynch/978-0-12-420165-1
http://store.digilentinc.com/basys-mx3-pic32mx-trainer-board-recommended-for-embedded-systems-courses/

Unit 6: Analog I/O and Process Control

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 2 of 19

3. 2 Standard USB A to micro-B cables

4. 5 V DC motor with tachometer

In addition, we suggest the following instruments:

5. Analog Discovery 2

4.2 Software

The following programs must be installed on your development workstation:

1. Microchip MPLAB X® v3.35 or higher

2. PLIB Peripheral Library

3. XC32 Cross Compiler

4. WaveForms 2015 (if using the Analog Discovery 2)

5. PuTTY Terminal Emulator

6. Spreadsheet application (such as Microsoft Excel)

5 Project Takeaways

1. How to read analog voltage with a PIC32 processor.

2. How to use the PIC32 Output Compare to implement a PWM analog output.

3. How to use the PIC32 Input Capture period measurement to implement a tachometer.

4. The advantages of using period measurements as opposed to frequency measurements and vice versa.

5. Fundamental digital filtering concepts for data smoothing.

6. Open-loop and closed-loop process control.

6 Fundamental Concepts

This unit introduces the concepts of process control of electro-mechanical systems that employ analog and digital

I/O. Reference 1 is the suggested companion reference and certain sections will be noted throughout this unit as

well as labs 6a and 6b. Be advised that this reference is based on the PIC32MX750 processor and not the

PIC32MX370 processor used on the Basys MX3 trainer board. This reference also uses a different hardware

platform for the software examples. The significant differences between these two processors are discussed in

Appendix C of this suggested reference book.

6.1 Process Control

Automated process control is an engineering discipline that deals with architectures, mechanisms and algorithms

for maintaining the output of a specific process within a desired range. In general, automation is the control of

equipment and systems that require minimum human interaction. Figure 6.1 is a block diagram representing the

main elements in microprocessor based automated system that could be used to implement an automobile speed

control. Although there are various forms of control theory, Reference 2 describes two forms of control: open-loop

and closed-loop.

The block diagram of Fig. 6.1 has partitioned the automated process into elements of hardware and software that

will be described in detail below. The elements shown inside the shaded blue box are implemented using software

http://store.digilentinc.com/usb-a-to-micro-b-cable/
http://store.digilentinc.com/motor-gearbox-1-19-gear-ratio-custom-12v-motor-designed-for-digilent-robot-kits/
http://store.digilentinc.com/analog-discovery-2-100msps-usb-oscilloscope-logic-analyzer-and-variable-power-supply/
http://www.microchip.com/mplab/mplab-x-ide
http://www.microchip.com/SWLibraryWeb/product.aspx?product=PIC32%20Peripheral%20Library
http://www.microchip.com/xcdemo/xcpluspromo.aspx
http://store.digilentinc.com/waveforms-2015-download-only/
http://www.putty.org/
https://en.wikipedia.org/wiki/Electromechanics
https://en.wikipedia.org/wiki/Automation
https://en.wikipedia.org/wiki/Control_theory
https://en.wikipedia.org/wiki/Open-loop_controller
http://www.electronics-tutorials.ws/systems/closed-loop-system.html

Unit 6: Analog I/O and Process Control

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 3 of 19

within the microprocessor. The elements shown inside the shaded green boxes are parts needed for open loop

control processing. The elements shown inside the shaded orange boxes are parts that are not required for open

loop but provide instrumentation to monitor the performance of the open loop system. The shaded yellow box

element is added to the open loop control and instrumentation elements to form a completed closed loop system.

The input signals that are continuous in nature must be converted from analog to digital by using an analog-to-

digital converter (ADC). Output signals that are used to control mechanical and thermal devices such as motors,

heaters, and air conditioners require the digital variable to be converted to an analog signal using a digital-to-

analog converter (DAC). Both the ADC and DAC will be discussed in detail to follow.

Figure 6.1. Automated process control block diagram.

6.1.1 Open Loop Control

Open-loop control of a system results when there is no feedback from the system output back into the control

algorithm. In other words, an open-loop controller does not determine if the processor is generating the desired

output, given the system inputs, because the system does not observe the output of the processes that it is

controlling. Consequently, a true open-loop system cannot correct any errors or compensate for disturbances to

the system.1 The signal path from input to output is called feed forward, as the output is some closed form

function of the input signal or signals. For example, using the open loop automobile speed control, the gas flow to

the engine is controlled by the position of the accelerator but the vehicle ground speed is not necessarily directly

related to the accelerator position. The driver must manually adjust the gas flow so the vehicle travels at the

desired speed. If the inclination of the road changes up or down, the driver must make adjustments in the

accelerator position to maintain a constant speed, in part by watching the speedometer.

6.1.2 Closed Loop Control

Closed-loop control requires information relating the actual operation of the device under control back to the

process algorithm.2 A classic example is the automobile cruise control. As the vehicle’s speed changes due to

changes in road inclination, the position of the accelerator is automatically adjusted to maintain the set speed.

Later model automobiles also have adaptive speed control to maintain speed when going down hills and

1 Open-loop controller, https://en.wikipedia.org/wiki/Open-loop_controller
2 Closed-loop Systems, http://www.electronics-tutorials.ws/systems/closed-loop-system.html

https://en.wikipedia.org/wiki/Open-loop_controller
https://en.wikipedia.org/wiki/Feedback
https://en.wikipedia.org/wiki/Feed_forward_(control)
https://en.wikipedia.org/wiki/Closed-form_expression
http://www.electronics-tutorials.ws/systems/closed-loop-system.html
https://en.wikipedia.org/wiki/Autonomous_cruise_control_system
https://en.wikipedia.org/wiki/Open-loop_controller
http://www.electronics-tutorials.ws/systems/closed-loop-system.html

Unit 6: Analog I/O and Process Control

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 4 of 19

approaching slower moving vehicles. It will be shown that the speed control of the DC electric motor is modeled by

the block diagram shown Fig. 6.1.

6.2 Signal Processing

Signal processing is an enabling technology that encompasses the fundamental theory, applications, algorithms,

and implementations of processing or transferring information contained in many different physical, symbolic, or

abstract formats, broadly designated as signals. In this unit, we will employ both analog and digital signal

processing. Analog signal processing will be used to implement frequency filters for both microprocessor inputs

and outputs. The analog filters are an electronic circuit operating on continuous-time analog signals. Digital filters

use computers and microprocessors to perform mathematical operations on sampled, discrete-time signals to

reduce or enhance certain aspects of that signal. We will look at how both analog and digital filters are used in

digital open and closed-loop control. It will become apparent in Lab 6b that the timing for sampling the inputs and

generating the output must occur at fixed intervals.

6.2.1 Analog Signal Processing

Analog signal processing is any type of signal processing conducted on continuous analog signals by some analog

means, usually involving electronic circuits consisting of resistors, capacitors, inductors, and high gain differential

amplifiers. The term “analog” refers to signals or information that is continuously variable. Mathematically, this

implies that the signal can be differentiated an infinite number of times.

Electronic analog computers are able to process analog signals using electronic operational amplifiers that

implement the basic mathematical operations such as add, subtract, multiply, and divide transcendental functions

such a logarithms and exponentials, as well as integral and differential calculus. Programming analog computers is

tantamount to wiring electronic circuits, making them difficult to construct and modify. Although microprocessors

have replaced most of the analog computers, they are still frequently used to implement electronic filters for

signal conditioning of digital computer inputs and outputs. Analog filters do have the advantage of being able to

operate at higher power levels and frequencies.

6.2.2 Digital Signal Processing

Digital signal processing (DSP) is the use of digital computers to implement digital processing to perform a wide

variety of signal processing operations. The signals processed in this manner are a sequence of numbers that

represent samples of a continuous variable in a domain such as time, space, or frequency.

Digital computers, particularly in the form of microprocessors, have replaced the computing effort that was

formerly allocated to many analog computers. Digital computers cannot directly process analog input signals

without first converting the signal into representations of the signal as discretely varying levels using an analog-to-

digital converter (ADC). Digital computers can generate discretely varying output using a digital-to-analog

converter (DAC), but to get truly continuous output, the DAC output must be further filtered using an analog filter.

In the course of this Unit, you will discover there are different approaches to implementing an ADC and DAC.

https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Filter_(signal_processing)
https://en.wikipedia.org/wiki/Analog_filter
https://en.wikipedia.org/wiki/Electronic_circuit
https://en.wikipedia.org/wiki/Continuous-time
https://en.wikipedia.org/wiki/Analog_signal
https://en.wikipedia.org/wiki/Sampling_(signal_processing)
https://en.wikipedia.org/wiki/Discrete-time
https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Differential_amplifier
https://en.wikipedia.org/wiki/Differential_amplifier
https://en.wikipedia.org/wiki/Analog_computer
https://en.wikipedia.org/wiki/Operational_amplifier
https://en.wikipedia.org/wiki/Differential_calculus
https://en.wikipedia.org/wiki/Calculus
https://en.wikipedia.org/wiki/Electronic_filter
https://en.wikipedia.org/wiki/Signal_conditioning
https://en.wikipedia.org/wiki/Digital_processing
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Sampling_(signal_processing)
https://en.wikipedia.org/wiki/Continuous_variable
https://en.wikipedia.org/wiki/Analog-to-digital_converter
https://en.wikipedia.org/wiki/Analog-to-digital_converter
https://en.wikipedia.org/wiki/Digital-to-analog_converter
https://en.wikipedia.org/wiki/Digital-to-analog_converter

Unit 6: Analog I/O and Process Control

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 5 of 19

7 Background Information

7.1 Motor Controls and Feedback

The details of the elements of the control system illustrated in Fig. 6.1 will be presented in the following sections,

starting with those outside the microprocessor, namely reference inputs and feedback from the motor. Then the

analog output from the processor into the motor will be addressed. Finally, the role of the microprocessor used for

open-loop and closed-loop control will be presented.

Figure 6.1 shows that there are two analog-to-digital converters (ADC) in the closed loop system that we will be

implementing. One is used to read a variable reference that sets the motor speed. A second is used to read the

motor speed tachometer. When working with time varying signals we will need to resolve the conflict between the

measurement of frequency and the frequency of measurement, and the effects of noise on the quality of the

measurements. We will look at different ways of implementing ADCs to measure an AC tachometer signal.

7.2 Variable Speed Control

The Analog Control Input on the Basys MX3 processor board will be used as the variable input control. Figure 7.1

shows that the potentiometer is connected to PORT B pin 2 of the PIC32MX370. To use the PIC32 analog input

connected to the potentiometer, we will need to assign RB2 as an analog input and then read the analog channel

on a periodic basis. Analog channel 2 (AN2) is assigned to read the analog input on RB2. The ADC value of AN2 will

vary from 0 to 1023 when the potentiometer output is varied from 0 to 3.3VDC. Initializing the ADC10 is not a

trivial matter and following examples is the best approach rather than starting by attempting to unravel the data

sheets.3 The ADC10 example in the Microchip PIC32 Peripheral Library of the MPLAB X Help can be used as a

reference for developing the code to read one or more ADC channels.

Figure 7.1. Analog Input Control schematic diagram.

Considering that the PIC32 ADC is connected to a potentiometer under manual control, the speed at which the

analog voltage can change is relatively low. In Lab 6a and 6b we will run the PIC32 ADC at a high rate of speed so

3 Analog to Digital Conversion”, http://umassamherstm5.org/tech-tutorials/pic32-tutorials/pic32mx220-
tutorials/adc

http://umassamherstm5.org/tech-tutorials/pic32-tutorials/pic32mx220-tutorials/adc
http://umassamherstm5.org/tech-tutorials/pic32-tutorials/pic32mx220-tutorials/adc

Unit 6: Analog I/O and Process Control

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 6 of 19

that the most recent ADC conversion will accurately reflect the current potentiometer setting. As Fig. 7.2

illustrates, the process of completing a single conversion consists of two phases: the sample phase and the

conversion phase. The parameter TAD is the period on the ADC clock that can be an internal RC oscillator or the

peripheral bus clock. From Fig. 7.1, we see that the input resistance is 10K ohms. According to the PIC32MX370

data sheet, the minimum TAD is 65 ns when the input resistance is 500 ohms. We will compensate for the elevated

input resistance by extending the conversion time. Using a peripheral bus clock of 10 MHz, TAD is 100 ns and

requires the minimum sample interval of 2 TAD. Longer sample intervals result in more accurate conversions. If we

set the sample rate to 250 KHz, then the conversion time, TC, will be 4 µs, or 40 TAD clock cycles. TC is the sum of the

conversion time and sample time as expressed by Eq. 7.1.

𝑇𝐶 = 𝑇𝐶𝑂𝑁𝑉 + 𝑇𝑆𝐴𝑀𝑃 = 4µ𝑠 = 40 · 𝑇𝐴𝐷 Eq. 7.1

Since the conversion time always requires 12 TAD clock cycles, the sample time is 2.8 µs, or 28 clock cycles, as

expressed by Eq. 7.2.

𝑇𝑆𝐴𝑀𝑃 = 𝑇𝐶 − 𝑇𝐶𝑂𝑁𝑉 = 2.8µ𝑠 = 28 · 𝑇𝐴𝐷 Eq. 7.2

Configuring the PIC32 ADC to start a new conversion as soon as the last one is completed gives us the 250 kHz

sample rate. In Lab 6a, the required conversion rate is 4 Hz, which is dictated by the background loop rate. The

conversion rate for Lab 6b is 1 kHz. Since both of these rates are far less than the rate at which the ADC is

converting the analog inputs to digital values, we can simply read the ADC whenever a new result is needed.

Figure 7.2. ADC10 conversion timing.

7.2.1 Feedback: Digital Tachometers

Tachometers indicate the speed of rotating machinery such as generators and motors. There are two basic types of

tachometer sensors: digital and analog. Digital tachometers are usually based on either optical or magnetic sensors

that require either a reflective surface or a magnetic element to be mounted on the motor shaft. The output of

digital tachometers is a signal whose frequency is linearly dependent on the motor shaft speed of rotation. Analog

tachometers are essentially an alternator (or AC generator) that is mechanically link to the motor shaft. Both the

amplitude and frequency of the alternator output is linearly dependent.

The DC motor shown in Fig. 7.3 will be used for Lab 6a and 6b and uses a motor that has a magnet attached to the

motor shaft. There are two Hall-effect sensors positioned orthogonally on the circuit board at one end of the

motor. Each time magnetism of the magnet attached to the rotor changes poles, the resistance of the Hall-effect

sensor changes from low to high. Hence when the motor is running, each Hall-effect sensor generates a square

wave offset by a quarter of a wave. Hall-effect sensors require a pull-up resistor to generate electric signals. This

pull-up resistor will be provided by a resistor that is internal to the PIC32 processor.

https://en.wikipedia.org/wiki/Tachometer
http://www.instructables.com/id/Measure-RPM-DIY-Portable-Digital-Tachometer/
http://eblogbd.com/types-of-speed-sensor-and-their-comparison/
https://en.wikipedia.org/wiki/Hall_effect_sensor

Unit 6: Analog I/O and Process Control

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 7 of 19

Figure 7.3. DC Motor with gearhead and bi-phase tachometer.

Figure 7.4 is a plot of the frequency produced by one of the Hall-effect sensors as a function of the percent duty

cycle of a pulse-width modulated (PWM) signal. It can be readily seen that the motor speed as measured by the

tachometer frequency is not a linear function of the motor control voltage produced by the PWM output. We will

see in Lab 6B how to linearize the motor speed with respect to the analog control voltage.

Figure 7.4. Tachometer Frequency vs %PWM for Open Loop control.

The primary question to be answered is, what is the maximum rate that frequency can be measured? In theory, it

is twice the inverse of the period of the signal. The advantages and disadvantages to the common frequency

measurement techniques are considered next.

https://en.wikipedia.org/wiki/Pulse-width_modulation

Unit 6: Analog I/O and Process Control

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 8 of 19

7.2.1.1 Cycle Counting

There are two methods of measuring the frequency of the digital tachometer. The number of pulses can be

counted per unit time or the inverse computed of the period between two successive transitions. Measuring

frequency by counting cycles or pulses over short intervals is more accurate for signals when the frequency of the

signal being measured is much greater than the frequency of measurements. The results should be many hundreds

or even thousands of cycles being measured during the measurement period, thus providing a high resolution with

a fixed measurement period.

One of the methods to mitigate the low number of cycles per fixed interval for low frequency signals is to employ

frequency multiplication. Most modern microcontrollers and microprocessors use frequency multiplication so that

the core speed of the processor is many times the processor crystal frequency using phased locked loop (PLL)

circuits. The PIC32 processor family uses a multiplier set in the config_bits.h file.4 PLL circuits, being second order

low pass filters, have slow dynamic responses that will delay accurate frequency measurements.

7.2.1.2 Period Measurement

Using timer counts to measure a signal period is generally more accurate for relatively low frequency signals and is

the method that will be implemented in Lab 6a and 6b. The speed of the motor rotor shaft can be measured by

computing the period between two successive pulses of the motor tachometer by capturing the time for each

transition. In order to achieve the measurement with relatively good accuracy, the period must be measured with

a high resolution. This requires that the timer must be counting at a much higher rate than the period of the of the

tachometer signal. The accuracy of the frequency is preserved by inverting the period using floating point

variables.

Measurement resolution is provided by the number of timer counts between input signal transitions. The

measurement period depends on the frequency of the input signal and, for very low frequency signals, may result

in excessively long delays between measurement updates. Note that the range of speed is from zero to 300

revolutions per second (RPS). Since the Hall-effect sensor creates a pulse every revolution, the period of revolution

is from infinity at zero RPS to 3.33 ms at 300 RPS. Obviously, zero RPS presents a problem for the microprocessor,

hence one must consider means of assigning a maximum limit to the tachometer period.

The task is to select the timer input clock rate that will provide adequate period accuracy across the range of

possible tachometer frequencies. From the derivation shown in Appendix B, for a given measurement period, the

granularity of any input frequency can be determined using Eq. 7.3.

∆𝐹 =
𝑇3𝐶𝐿𝐾_𝑃𝐷

𝑇𝑆𝐼𝐺𝑁𝐴𝐿
· 𝐹𝑆𝐼𝐺𝑁𝐴𝐿 = 𝑇3𝐶𝐿𝐾_𝑃𝐷𝐹𝑆𝐼𝐺𝑁𝐴𝐿2 Eq. 7.3

where FSIGNAL = 1/TSIGNAL and T3PD = T3PRESCALE/PBCLK

Eq. 7.3 demonstrates that granularity, ΔF, increases as the square of the input frequency and has dimensions of Hz.

For example, a peripheral bus clock (PBCLK) rate of 10 MHz and a timer pre-scale value of 16 will result in a 0.064

Hz/timer count granularity if the tachometer frequency is 200 Hz. Since the maximum period is 65536 timer

counts, the minimum measurable frequency is 4.768 Hz. As Fig. 7.5 demonstrates, a higher input frequency results

in a higher granularity of the measurement for a given period of measurement. Better resolution (lower

granularity) can be achieved by extending the measurement period, T3PD, which is the same result as a lower input

frequency.

4 See http://www.sentex.ca/~mec1995/gadgets/pll/pll.html for description of a PLL circuit.

https://dqydj.com/how-to-multiply-the-frequency-of-digital-logic-clocks-using-a-pll/
https://en.wikipedia.org/wiki/Phase-locked_loop
http://tera.yonsei.ac.kr/class/2009_1/lecture/Lect%2023%20PLL%20Dynamics.pdf
http://tera.yonsei.ac.kr/class/2009_1/lecture/Lect%2023%20PLL%20Dynamics.pdf
http://www.sentex.ca/~mec1995/gadgets/pll/pll.html

Unit 6: Analog I/O and Process Control

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 9 of 19

Figure 7.5. Plot of frequency measurement resolution.

7.2.1.3 Tachometer Interface

The DC motor plus encoder shown in Fig. 7.3 has a 6 pin connector, shown in Fig. 7.5 below. The hardware

configuration with the Basys MX3 board is shown in Fig. A.1. The wires in Fig. 7.6 attach to the DC motor assembly

with pin assignments as shown in Table 7.1. The brown, green and blue wires interface a processor input pin to the

Hall Sensor A output, as shown in Fig. 7.7. Hall Sensor B is not used for Lab 6a or 6b.

Table 7.1. DC Motor connector pin assignment.

Pin Number Wire color Function Basys MX3

1 Black Motor - J5 – A1

2 Red Motor + J5 – A2

3 Brown Hall Sensor VCC (3.3V) JA – 11

4 Green Hall Sensor GND JA – 12

5 Blue Hall Sensor Output A JA – 10

6 Purple Hall Sensor Output B No Connection

The Hall Sensor outputs have an open collector configuration, thus requiring a pull-up resistor. Since only some of

the PIC32MX370 pins have pull-up resistors, our task is to select an I/O pin that can be configured as an input

capture and can be configured to have a pull-up resistor enabled. RG8 and RG9 that connect to JA9 and JA10

respectively meet these requirements. Listing 7.1 shows the C code required to configure Port G pin 9 for input

capture.

Listing 7.1. Configuring I/O pin RG9 for input capture.

 ANSELGbits.ANSG9 = 0; // Set pin as digital IO
 TRISGbits.TRISG9 = 1; // Set pin as input
 ConfigCNGPullups(CNG9_PULLUP_ENABLE); // Enable pull-up resistor
 IC1R = 0b00000001; // RG9 to Input Capture 1
 OpenTimer3(T3_ON | T3_PS_1_16, T3_TICK-1); //Set Timer 3 clock rate
 OpenCapture1(IC_EVERY_RISE_EDGE | IC_INT_1CAPTURE | IC_TIMER3_SRC |\
 IC_FEDGE_RISE | IC_ON);
 ConfigIntCapture1(IC_INT_ON | IC_INT_PRIOR_2 | IC_INT_SUB_PRIOR_0);

https://en.wikipedia.org/wiki/Open_collector

Unit 6: Analog I/O and Process Control

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 10 of 19

Figure 7.6. Motor Connector wiring.

Figure 7.7. Pmod JA connector wiring.

7.2.2 Analog Output: Pulse-width Modulation

In Lab 5, we used pulse-width modulation to generate a communications signal of a constant frequency pulse train

where the carrier frequency was turned on by setting the PWM output ratio to 9%, and off by setting the output

PWM ratio to 100%. The information used to modulate the IR beam is contained in the amplitude modulation of

the PWM carrier signal. In Labs 6a and 6b, the information is contained in the duty cycle of the PWM signal, which

is a form of frequency modulation. This signal will be demodulated with low pass filtering to generate an analog

control signal.

Lab 5 discussed the details of how to set up a PWM output using the output compare special function of the PIC32

processor. However, Lab 6a and 6b will require that we set up two PWM outputs that all use a common timer if

the motor is to be capable of reversing direction. After initializing the timer to be used with the output compare

and initializing the two output-compare channels, the PWM duty cycle of each individual channel is easily changed

using the instruction SetDCOCxPWM(DC); where x denotes the PWM channel and DC is the compare setting. DC is

computed by multiplying timer period register by the percent PWM. Provided that the two instructions used to

modify the PWM duty cycle are completed within the PWM period, both outputs will simultaneously change their

duty cycle at the end of the next PWM period.

Demodulation of PWM requires a low-pass filter that can be implemented with a simple RC (resistor-capacitor)

filter as shown in Fig. 7.8. Fig. 7.9 shows the input – output relationship of filtering a PWM signal with 60% duty

cycle. One observes from Fig. 7.9 that not all of the high frequency carrier signal is removed by the low-pass filter,

but the amount of the carrier frequency that remains may be sufficiently reduced, depending on the application.

Higher order filters and/or a higher carrier frequency will result in further reduction of the carrier signal from the

demodulated signal. The cost of using a higher carrier frequency is the reduction of demodulated signal resolution.

The cost of a higher order analog filter is the increased component count and expense.

Figure 7.8. Analog RC Low-pass filter.

https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Duty_cycle
https://en.wikipedia.org/wiki/Duty_cycle

Unit 6: Analog I/O and Process Control

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 11 of 19

Figure 7.9. PWM Signal with 60% duty cycle and RC filter output.

For Lab 6a and Lab 6b, the rotor inertia of the DC motor itself provides all the needed low-pass filtering, provided

the carrier frequency is sufficiently high.

7.2.3 Motor Speed Control

Figure 7.10 shows the electric model of a permanent magnet brushed DC motor, such as the one shown in Fig. 7.3.

The torque of the motor is proportional to the armature current labeled Ia. The armature winding resistance, Ra,

and winding inductance, La, are fixed. The back electromotive force (EMF) is proportional to the speed of the

motor.

Figure 7.10. Electric model of a brushed DC motor.

When the motor voltage, Vm, is initially applied, the motor speed will increase until the back EMF plus the voltage

drop across Ra due to the armature current, Ia, equals the applied voltage, Vm. The most common method of

controlling the speed of a permanent magnet brushed DC motor is to vary the motor supply voltage, Vm. For a

Unit 6: Analog I/O and Process Control

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 12 of 19

fixed Vm, if a mechanical load is applied to the shaft of the motor, the speed of the motor and the back EMF will

decrease, resulting in increased armature current to generate the needed motor torque. If the speed is to remain

constant for varying applied mechanical loads, the motor applied voltage, Vm, must change accordingly. We will

vary the applied motor voltage by changing the PWM duty cycle as discussed below.

7.2.3.1 Motor Output Interface

The motor driver IC on the Basys MX3 processor platform is shown in Fig. 7.11. The motor wires used for power

input and tachometer output are identified in Fig. 7.12. A 5.0 V external power supply is required to be connected

to J11, marked as VBAR on the Basys MX3 processor board. A jumper must be used on JP1 to connect the 5V

power, VBAR, to the motor supply, VM.

Figure 7.11. Basys MX3 Motor driver circuit.

Figure 7.12. Basys MX3 connection to motor power wiring.

For Labs 6a and 6b, only outputs A1 and A2 are connected to the leads of the DC motor (RED and BLACK).

Switching the A1 and A2 connections to the motor causes the motor to rotate in the opposite direction.

Unit 6: Analog I/O and Process Control

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 13 of 19

Table 7.2. Motor driver IC7 connection to PIC32 processor

Function IC7 Pin PIC32 Port Pin Function

AIN1 10 RB3 Motor Supply +

BIN1 8 RE9 Not Used - Set to zero

AIN2 9 RE8 Motor Supply -

BIN2 7 RB5 Not used – Set to zero

MODE 11 RF1 Set to 0

7.2.3.2 DC Motor Speed Control

The percent PWM update rate should minimally match the input sample rate. Maximally, the percent PWM update

rate should be less than or equal to the PWM carrier frequency. Attempting to update percent PWM any faster

than the PWM carrier frequency will result in some updates being simply overwritten before being transferred to

the primary timer compare register. Since two PWM outputs are used to synchronize the two outputs to the motor

driver IC, both PWM channels must be updated in rapid succession. The code to do this is included with Lab 6a.

8 References

1. K.M. Lynch, N. Marchuk, and M.L. Elwin, Embedded Computing and Mechatronics with the PIC32

Microcontroller, Newnes Publishers, 2016, ISBN 978-0-12-420165-1

2. “Open-vs. closed-loop Control”, Vance VanDoren, Control Engineering, Aug. 28, 2014

3. DRV8835 Data Sheet, https://www.pololu.com/file/0J570/drv8835.pdf

4. “Brished DC Motor Basics Webinar”, John Moutton, Microchip Technologies Inc.,

http://www.microchip.com/stellent/groups/SiteComm_sg/documents/DeviceDoc/en543041.pdf

5. “AN905 Brushed DC Motor Fundamentals”, Reston Condit, Microchip Technology Inc, Aug. 4, 2010,

http://ww1.microchip.com/downloads/en/AppNotes/00905B.pdf

6. AN538, “Using PWM to Generate Analog Output”, Amar Palacheria, Microchip Technology Inc.,

http://ww1.microchip.com/downloads/en/AppNotes/00538c.pdf

7. “AB-022: PWM Frequency for Linear Motion Control”, Precision Microdrives ™,

https://www.precisionmicrodrives.com/application-notes/ab-022-pwm-frequency-for-linear-motion-

control

8. “AN1353 Op Amp Rectifier, Peak Detectors and Clamps”, Dragos Ducu, Microchip Technologies Inc.,

2011, http://ww1.microchip.com/downloads/en/AppNotes/01353A.pdf

9. Scientists and Engineer’s Guide to Digital Signal Processing, Dr. Steven W. Smith,

http://www.dspguide.com/

10. “Implementing a PID controller Using a PIC18 MCU”, Chris Valenti, Microchip Technologies Inc., 2005,

http://ww1.microchip.com/downloads/en/AppNotes/00937a.pdf

https://www.pololu.com/file/0J570/drv8835.pdf
http://www.microchip.com/stellent/groups/SiteComm_sg/documents/DeviceDoc/en543041.pdf
http://ww1.microchip.com/downloads/en/AppNotes/00905B.pdf
http://ww1.microchip.com/downloads/en/AppNotes/00538c.pdf
https://www.precisionmicrodrives.com/application-notes/ab-022-pwm-frequency-for-linear-motion-control
https://www.precisionmicrodrives.com/application-notes/ab-022-pwm-frequency-for-linear-motion-control
http://ww1.microchip.com/downloads/en/AppNotes/01353A.pdf
http://www.dspguide.com/
http://ww1.microchip.com/downloads/en/AppNotes/00937a.pdf

Unit 6: Analog I/O and Process Control

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 14 of 19

Appendix A: DC Motor Connection to Basys MX3

Figure A.1. Motor and tachometer wiring.

Unit 6: Analog I/O and Process Control

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 15 of 19

Appendix B: Frequency Measurement Resolution

Definition: The granularity of a sensor measurement is the smallest change it can detect in the quantity that it is

measuring. Resolution, which is the inverse of granularity, is related to the precision with which the measurement is

made in Units - Hz/Count.

Assume that Timer 3 count is recorded on each positive transition. Then for two frequencies, F1 and F2, the Timer

3 counts are computed by:

𝐹𝑇𝑀𝑅3 =
𝑃𝐵𝐶𝐿𝐾

𝑇3𝑃𝑆
=

107

1
 Eq. B.1

𝑇3𝐶𝑂𝑈𝑁𝑇1 =
𝐹𝑇𝑀𝑅3

𝐹1
 Eq. B.2

𝑇3𝐶𝑂𝑈𝑁𝑇2 =
𝐹𝑇𝑀𝑅3

𝐹2
=

107

1
 Eq. B.3

To compute the resolution in Hz per count, assume that the count difference is unity which results in Eq. B.4 or Eq.

B.5, whichever expresses the desired units.

|𝑇3𝐶𝑂𝑈𝑁𝑇1 − 𝑇3𝐶𝑂𝑈𝑁𝑇2| = 𝐺𝑟𝑎𝑛𝑢𝑙𝑎𝑟𝑖𝑡𝑦 = (𝐹𝑇𝑀𝑅3) ∙ |(
1

𝐹2
−

1

𝐹1
)|𝐶𝑂𝑈𝑁𝑇𝑆/𝐻𝑧 Eq. B.4

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = (
1

𝐹𝑇𝑀𝑅3
) ∙ (

1

|
1

𝐹1
−

1

𝐹2
|
) = (

1

𝐹𝑇𝑀𝑅3
) ∙ (

𝐹1∙𝐹2

|𝐹2−𝐹1|
)𝐻𝑧/𝐶𝑂𝑈𝑁𝑇 Eq. B.5

|𝐹2 − 𝐹1| = 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = (
𝐹1∙𝐹2

𝐹𝑇𝑀𝑅3
)𝐻𝑧/𝐶𝑂𝑈𝑁𝑇 Eq. B.6

If F1 approximately equals F2 at 1 Hz, the resolution is 0.0008 Hz/Count. At 200 Hz, the resolution is 1.28 Hz/count.

http://en.wikipedia.org/wiki/Accuracy_and_precision

Unit 6: Analog I/O and Process Control

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 16 of 19

Appendix C: Classical Control Theory

According to Reference 10, PID (proportional – integral - derivative) algorithms, as modeled in Fig. C.1, have been

used in feedback control since 1940. Except for the fact that the mathematical model for Fig. C.1 is in the

continuous domain, one can readily see that it is a simplified version of Fig. 6.1. The dynamics of the system are

represented in the Laplace domain by the controller, C(s), the plant or machine, P(s), and the feedback, F(s). Each

of the dynamic elements can be expressed as polynomials in the form of Eq. C.1.

𝐺(𝑠) =
𝑏0+𝑏1∙𝑠+𝑏2∙𝑠

2+𝑏3∙𝑠
3+⋯+𝑏𝑀∙𝑠

𝑀

𝑎0+𝑎1∙𝑠+𝑎2∙𝑠
2+𝑎3∙𝑠

3+⋯+𝑎𝑁∙𝑠
𝑁 Eq. C.1

R(s) is the input reference variable, Y(s) is the output variable, E(s) is the error variable computed as the difference

between the reference, R(s), and the feedback variable, F(s). F(s) is the feedback variable that is the transformed

output representing the dynamics of the instrumentation.

Figure C.1. Simplified block diagram of closed-loop control system.

𝑌(𝑠) = 𝑃(𝑠) ∙ 𝑈(𝑠) Eq. C.2

𝑈(𝑠) = 𝐶(𝑠) ∙ 𝐸(𝑠) Eq. C.3

𝐸(𝑠) = 𝑅(𝑠) − 𝑌(𝑠) Eq. C.4

𝑌(𝑠)

𝑅(𝑠)
=

𝑃(𝑠)∙𝐶(𝑠)

1+𝐹(𝑠)∙𝑃(𝑠)∙𝐶(𝑠)
= 𝐻(𝑠) Eq. C.5

Although PID controllers give optimal control in regards to response time, minimum overshoot, and steady state

error, the parameters that govern the controller behavior can be difficult to determine. If proportional gain is used

exclusively, the gain would need to be infinite to result in zero control error. The instability of a PID control system

is most often attributed to the derivative gain, hence Kd is often set to zero, resulting in PI control. Using

proportional and integral (PI) control will result in zero steady state error using realizable gains. It turns out that

many industrial plant process controllers use PI control.

https://en.wikipedia.org/wiki/PID_controller

Unit 6: Analog I/O and Process Control

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 17 of 19

Figure C.2. Block diagram of a PID controller.5

In the system shown in Fig. C.2, the term plant generally refers to a dynamic system that we are attempting to

control in some specified manner, which for the case of Lab 6a and 6b is the speed of a DC motor. The voltage

applied to the motor can be adjusted as needed in order to drive the difference between the desired speed (the

reference inputs r(t) and the speed measured using the tachometer, y(t)) to approach zero. The motor cannot

instantaneously change because of the laws of physics and electricity that govern the speed of the motor.

When using open loop control, we never really know how fast the motor is turning without monitoring. External

influences such as fluctuations in the power, voltage, load, or friction losses will affect the motor speed. Imagine

using an open loop control for speed control on your car (equating the speed of the motor with the car wheels). It

would work as long as the car is subject to that same road and environmental conditions. But put a hill in the road

and watch what happens. First, the car will slow to until the energy set by the position of the accelerator equals

the energy needed to climb the hill at a reduced speed.

If the accelerator is controlled by the difference between the desired (or set) speed and the actual speed, we then

have a proportional closed-loop system. This is called proportional control and mathematically the control

algorithm is expressed as shown in Eq. C.6 where e(t) is the error signal and C(t) is the control output.

𝑐(𝑡) = 𝐾𝑝(𝑉𝑆𝐸𝑇 − 𝑉𝑇𝐴𝐶𝐻) = 𝐾𝑝 ∙ 𝑒(𝑡) Eq. C.6

Eq. C.6 works well as long as there is sufficient error and gain (KP) to the control supplying gas to the motor. But as

the car approaches the setpoint velocity, the error gets smaller until there is insufficient error such that, when

multiplied by the gain, the system will achieve some kind of equilibrium. There will always be a finite error with

strictly proportional control. Even though the error can be made smaller by increasing the gain, the error will never

go to zero.

PI control to the rescue! When we add integration of the error signal to the control algorithm, then we can get

zero steady state response errors for step inputs. Such a control algorithm is written using Laplace operators in Eq.

C.7.

𝐶(𝑠) = (𝐾𝑝 +
𝐾𝑖

𝑠
) (𝑉𝑆𝐸𝑇 − 𝑉𝑇𝐴𝐶𝐻) = (𝐾𝑝 +

𝐾𝑖

𝑠
) ∙ 𝐸(𝑠) Eq. C.7

Thus, the control signal is proportional to the integral of the error signal, and in part, directly to the magnitude of

the error signal itself. Because of this, this approach to control is referred to as PI (proportional-integral) control. A

5 https://en.wikipedia.org/wiki/PID_controller

https://en.wikipedia.org/wiki/PID_controller

Unit 6: Analog I/O and Process Control

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 18 of 19

distinct advantage of PI control is that using it results in zero steady state error for a first order plant (G1(s) = k/s).

Now computers can’t solve equations in the continuous domain, therefore we must transform to a discrete

domain that allows us to use samples of continuous signals. Eq. C.8 is the transformation from continuous to

discrete time domain that is based upon rectangular integration. Ts is the interval between samples of the input.

𝑠 = (
1−𝑧−1

𝑇𝑠
) Eq. C.8

Completing the appropriate computations after substituting Eq. C.8 into Eq. C.7, we end up with a discrete time

equation shown in Eq. C.9.

𝐶(𝑧) = (𝐾𝑝 + 𝐾𝑖 ∙ (1 − 𝑧−1) ∙ 𝐸(𝑧) Eq. C.9

A more popular conversion is based upon the trapezoidal rule integration and is called the bilinear transformation

and is expressed in Eq. C.10. This transformation is actually a better approximation of the exact transformation s =

e-jwTs than is Eq. C.8. Substituting Eq. C.10 into Eq. C.7, we get the result shown in Eq. C.11. After some simplification

we arrive at Eq. C.12.

𝑠 = (
2

𝑇𝑠
) (

1−𝑧−1

1+𝑧−1
) Eq. C.10

𝐶(𝑧) = (𝐸(𝑧)) [𝐾𝑝 +
𝑇𝑠𝐾𝑖

2
(
1+𝑧−1

1−𝑧−1
)] = (

𝐸(𝑧)

1−𝑧−1
) ∙ [(

𝑇𝑠𝐾𝑖

2
+ 𝐾𝑝) + (

𝑇𝑠𝐾𝑖

2
−𝐾𝑝) ∙ 𝑧

−1] Eq. C.11

Or

𝐶(𝑧) ∙ (1 − 𝑧−1) = [(
𝑇𝑠𝐾𝑖

2
+ 𝐾𝑝)] ∙ 𝐸(𝑧) + (

𝑇𝑠𝐾𝑖

2
− 𝐾𝑝) ∙ 𝐸(𝑧)𝑧

−1 Eq. C.12

So the question that is begged to be answered is what is z-1? Well for our purposes, it is the delay operator and any

variable multiplied by the delay operator is simply that variable at the previous time interval. So Eq. C.12 can now

be written as Eq. C.13, which is a difference equation that can be solved by any computer, microprocessor, or

microcontroller. The code to implement the pseudocode shown in Listing C.1 becomes the computer algorithm

block shown back in Fig. 6.1. It is executed at the rate that the control loop operates.

𝑐𝑛 = (
𝑇𝑠𝐾𝑖

2
+ 𝐾𝑝) ∙ 𝑒𝑛 + (

𝑇𝑠𝐾𝑖

2
− 𝐾𝑝) ∙ 𝑒𝑛−1 + 𝑐𝑛−1 Eq. C.13

Listing C.1. Pseudo code for Digital PI controller

#define GetPeripheralClock() 10000000 // PBCLK set in config_bits.h
#define PWM_MAX (GetPeripheralClock()/10000) // Set output range
#define PWM_MIN 0

static int ERROR = 0; // Initial value for en-1
static int CTRL = 0; // Initial value for cnn-1

TACH = Read motor speed (Hz); // Global variable set by InputCapture ISR
// The SET_SPEED reference input is scales using a first order polynomial in the form y = ax + b to set the slope, a, with
// units rps/ADC bit and ”b” being the minimum speed when the ADC input is zero
SET_SPEED = Scaled potentiometer setting // Determine speed set point from ADC

ERROR_LAST = ERROR; // Save previous error and control values
CTRL_LAST = CTRL;
ERROR = SET_SPEED - TACH; // Compute new error value

Unit 6: Analog I/O and Process Control

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 19 of 19

CTRL = (KP + KI)*ERROR - (KP - KI)*ERROR_LAST + CTRL_LAST; // Compute new control output value

if(CTRL > PWM_MAX) then PWM_CONTROL = PWM_MAX; else // Limit output range to prevent windup
{

If (CTRL < PWM_MIN) then PWM_CONTROL = PWM_MIN; else
PWM_CONTROL = CTRL; // Output PWM value

}

In the above code listing, the integral gain KI is equal to (T/2)Ki. An alternative approach for controlling motor

speed can be found in any control theory text book that includes derivative control, but is not required for this

assignment. Other approaches may be found in various control theory text books.

